The Representer Theorem

David S. Rosenberg

New York University

February 13, 2018

Contents

(1) Inner Product Spaces and Projections (Hilbert Spaces)
(2) Representer Theorem

Inner Product Spaces and Projections (Hilbert Spaces)

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space \mathcal{V} and an inner product, which is a mapping

$$
\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbf{R}
$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbf{R}$:

- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$
- Linearity: $\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle$
- Positive-definiteness: $\langle x, x\rangle \geqslant 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$.

Norm from Inner Product

For an inner product space, we define a norm as

$$
\|x\|=\sqrt{\langle x, x\rangle} .
$$

Example

\mathbf{R}^{d} with standard Euclidean inner product is an inner product space:

$$
\langle x, y\rangle:=x^{T} y \quad \forall x, y \in \mathbf{R}^{d} .
$$

Norm is

$$
\|x\|=\sqrt{x^{T} x}
$$

What norms can we get from an inner product?

Theorem (Parallelogram Law)
A norm $\|\cdot\|$ can be written in terms of an inner product on \mathcal{V} iff $\forall x, x^{\prime} \in \mathcal{V}$

$$
2\|x\|^{2}+2\left\|x^{\prime}\right\|^{2}=\left\|x+x^{\prime}\right\|^{2}+\left\|x-x^{\prime}\right\|^{2}
$$

and if it can, the inner product is given by the polarization identity

$$
\left\langle x, x^{\prime}\right\rangle=\frac{\|x\|^{2}+\left\|x^{\prime}\right\|^{2}-\left\|x-x^{\prime}\right\|^{2}}{2} .
$$

Example
ℓ_{1} norm on \mathbf{R}^{d} is NOT generated by an inner product. [Exercise]
Is ℓ_{2} norm on \mathbf{R}^{d} generated by an inner product?

Orthogonality (Definitions)

Definition

Two vectors are orthogonal if $\left\langle x, x^{\prime}\right\rangle=0$. We denote this by $x \perp x^{\prime}$.

Definition
x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Pythagorean Theorem

Theorem (Pythagorean Theorem)
If $x \perp x^{\prime}$, then $\left\|x+x^{\prime}\right\|^{2}=\|x\|^{2}+\left\|x^{\prime}\right\|^{2}$.

Proof.
We have

$$
\begin{aligned}
\left\|x+x^{\prime}\right\|^{2} & =\left\langle x+x^{\prime}, x+x^{\prime}\right\rangle \\
& =\langle x, x\rangle+\left\langle x, x^{\prime}\right\rangle+\left\langle x^{\prime}, x\right\rangle+\left\langle x^{\prime}, x^{\prime}\right\rangle \\
& =\|x\|^{2}+\left\|x^{\prime}\right\|^{2}
\end{aligned}
$$

Projection onto a Plane (Rough Definition)

- Choose some $x \in \mathcal{V}$.
- Let M be a subspace of inner product space \mathcal{V}.
- Then m_{0} is the projection of x onto M,
- if $m_{0} \in M$ and is the closest point to x in M.
- In math: For all $m \in M$,

$$
\left\|x-m_{0}\right\| \leqslant\|x-m\| .
$$

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is complete if all Cauchy sequences in the space converge.

Definition

A Hilbert space is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

The Projection Theorem

Theorem (Classical Projection Theorem)

- \mathcal{H} a Hilbert space
- M a closed subspace of \mathcal{H} (picture a hyperplane through the origin)
- For any $x \in \mathcal{H}$, there exists a unique $m_{0} \in M$ for which

$$
\left\|x-m_{0}\right\| \leqslant\|x-m\| \forall m \in M .
$$

- This m_{0} is called the [orthogonal] projection of x onto M.
- Furthermore, $m_{0} \in M$ is the projection of x onto M iff

$$
x-m_{0} \perp M .
$$

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathcal{H}. For any $x \in \mathcal{H}$, let $m_{0}=\operatorname{Proj}_{M} x$ be the projection of x onto M. Then

$$
\left\|m_{0}\right\| \leqslant\|x\|
$$

with equality only when $m_{0}=x$.
Proof.

$$
\begin{aligned}
\|x\|^{2} & =\left\|m_{0}+\left(x-m_{0}\right)\right\|^{2}\left(\text { note: } x-m_{0} \perp m_{0} \text { by Projection theorem }\right) \\
& =\left\|m_{0}\right\|^{2}+\left\|x-m_{0}\right\|^{2} \text { by Pythagorean theorem } \\
\left\|m_{0}\right\|^{2} & =\|x\|^{2}-\left\|x-m_{0}\right\|^{2}
\end{aligned}
$$

Then $\left\|x-m_{0}\right\|^{2} \geqslant 0$ implies $\left\|m_{0}\right\|^{2} \leqslant\|x\|^{2}$. If $\left\|x-m_{0}\right\|^{2}=0$, then $x=m_{0}$, by definition of norm.

Representer Theorem

Generalize from SVM Objective

- SVM objective:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left[\left\langle w, x_{i}\right\rangle\right]\right) .
$$

- Generalized objective:

$$
\min _{w \in \mathscr{H}} R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right),
$$

where

- $R:[0, \infty) \rightarrow \mathbf{R}$ is nondecreasing (Regularization term)
- and $L: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is arbitrary. (Loss term)

General Objective Function for Linear Hypothesis Space (Details)

- Generalized objective:

$$
\min _{w \in \mathcal{H}} R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right),
$$

where

- $w, x_{1}, \ldots, x_{n} \in \mathcal{H}$ for some Hilbert space \mathcal{H}. (We typically have $\mathcal{H}=\mathbf{R}^{d}$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H}. (i.e. $\|w\|=\sqrt{\langle w, w\rangle}$)
- $R:[0, \infty) \rightarrow \mathbf{R}$ is nondecreasing (Regularization term), and
- $L: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

- Generalized objective:

$$
\min _{w \in \mathcal{H}} R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right),
$$

- What's "linear'?
- The prediction/score function $x \mapsto\left\langle w, x_{i}\right\rangle$ is linear - in what?
- in parameter vector w, and
- in the feature vector x_{i}.
- Why? [Real-valued] inner products are linear in each argument.
- The important part is the linearity in the parameter w.

General Objective Function for Linear Hypothesis Space (Details)

- Generalized objective:

$$
\min _{w \in \mathcal{H}} R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right),
$$

- Ridge regression and SVM are of this form.
- What if we penalize with $\lambda\|w\|_{2}$ instead of $\lambda\|w\|_{2}^{2}$? Yes!.
- What if we use lasso regression? No! ℓ_{1} norm does not correspond to an inner product.

The Representer Theorem

Theorem (Representer Theorem)
Let

$$
J(w)=R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right),
$$

where

- $w, x_{1}, \ldots, x_{n} \in \mathcal{H}$ for some Hilbert space \mathcal{H}. (We typically have $\mathcal{H}=\mathbf{R}^{d}$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H}. (i.e. $\|w\|=\sqrt{\langle w, w\rangle}$)
- $R:[0, \infty) \rightarrow \mathbf{R}$ is nondecreasing (Regularization term), and
- $L: \mathrm{R}^{n} \rightarrow \mathrm{R}$ is arbitrary (Loss term).

Then

- If $M=\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$, then $J\left(\operatorname{Proj}_{M} w\right) \leqslant J(w)$ for any $w \in \mathcal{H}$.
- If $J(w)$ has a minimizer, then it has a minimizer of the form $w^{*}=\sum_{i=1}^{n} \alpha_{i} x_{i}$.
- If R is strictly increasing, then all minimizers have this form. (Proof in homework.)

The Representer Theorem (Proof)

(1) Fix any $w \in \mathcal{H}$.
(2) Let $w_{M}=\operatorname{Proj}_{M} w$.
(3) Then $w_{M}^{\perp}:=w-w_{M}$ is orthogonal to M.
(1) So $\left\langle w, x_{i}\right\rangle=\left\langle w_{M}+w_{M}^{\perp}, x_{i}\right\rangle=\left\langle w_{M}, x_{i}\right\rangle \forall i$, and
(5) $L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right)=L\left(\left\langle w_{M}, x_{1}\right\rangle, \ldots,\left\langle w_{M}, x_{n}\right\rangle\right)$.
(0) Projections decrease norms: $\left\|w_{M}\right\| \leqslant\|w\|$.
(1) Since R is nondecreasing, $R\left(\left\|w_{M}\right\|\right) \leqslant R(\|w\|)$.
(8) $J\left(w_{M}\right) \leqslant J(w)$. [Proves first result.]
(9) If w^{*} minimizes $J(w)$, then $w_{M}^{*}=\operatorname{Proj}_{M} w^{*}$ is also a minimizer, since $J\left(w_{M}^{*}\right) \leqslant J\left(w^{*}\right)$.
(10) So $\exists \alpha$ s.t. $w_{M}^{*}=\sum_{i=1}^{n} \alpha_{i} x_{i}$ is a minimizer of $J(w)$.
Q.E.D.

Sufficient Condition for Existence of a Minimizer

Theorem

${ }^{a}$ Let

$$
J(w)=R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right),
$$

and let $M=\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$. Then under the same conditions given in the Representer theorem, if w_{M}^{*} minimizes $J(w)$ over the set M, then w_{M}^{*} minimizes $J(w)$ over all \mathcal{H}.
${ }^{\text {a }}$ Thanks to Mingsi Long for suggesting this nice theorem and proof.

- One consequence of the Representer theorem only applies if $J(w)$ has a minimizer over \mathcal{H}. This theorem tells us that it's sufficient to check for a constrained minimizer of $J(w)$ over M. If one exists, then it's also an unconstrained minimizer of $J(w)$ over \mathcal{H}. If there is no constrained minimizer over M, then $J(w)$ has no minimizer over \mathcal{H} (by the Representer theorem).
- Bottom Line: We can jump straight to minimizing over M, the "span of the data".

Sufficient Condition for Existence of a Minimizer (Proof)

(1) Let $w_{M}^{*} \in \arg \min _{w \in M} J(w)$. [the constrained minimizer]
(2) Consider any $w \in \mathcal{H}$.
(3) Let $w_{M}=\operatorname{Proj}_{M} w$.
(9) By the Representer theorem, $J\left(w_{M}\right) \leqslant J(w)$.
(6) $J\left(w_{M}^{*}\right) \leqslant J\left(w_{M}\right)$ by definition of w_{M}^{*}.
(0 Thus for any $w \in \mathcal{H}, J\left(w_{M}^{*}\right) \leqslant J(w)$.
(0) Therefore w_{M}^{*} minimizes $J(w)$ over \mathcal{H}

QED

