Lagrangian Duality in 10 Minutes

David S. Rosenberg

New York University

February 13, 2018

- A General Optimization Problem
- 2 Lagrangian Duality
- 3 Convex Optimization
- 4 Consequences of Strong Duality

A General Optimization Problem

General Optimization Problem: Standard Form

Inequality Constrained Optimization Problem: Standard Form

minimize $f_0(x)$ subject to $f_i(x) \leq 0, i = 1, ..., m$

where $x \in \mathbf{R}^n$ are the optimization variables and f_0 is the objective function.

- No assumptions on functions f_0, \ldots, f_m .
 - (In particular no convexity assumptions.)

The Primal and the Dual

• For any primal form optimization problem,

minimize $f_0(x)$ subject to $f_i(x) \leq 0, i = 1, ..., m$,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize $g(\lambda)$ subject to $\lambda_i \ge 0, i = 1, ..., m$,

where $\lambda = (\lambda_1, \dots, \lambda_m)$ are called Lagrange multipliers or dual variables.

In this formulation, g may take the value $-\infty$. Can get rid of this with additional constraints.

The Dual is Always a Convex Problem

- For any primal problem (convex or not), g is a concave function.
- Thus the dual is a **concave maximization** problem:

maximize $g(\lambda)$ subject to $\lambda_i \ge 0, i = 1, ..., m$.

- Switch sign of g and change max \mapsto min to get a convex optimization problem.
- Because of the trivial equivalence to a convex optimization problem, concave maximization problems are also typically considered convex optimization problems.
- Can the dual problem help us solve the primal problem?

Lagrangian Duality

Primal and Dual Optimal Points (Definitions)

Primal problem

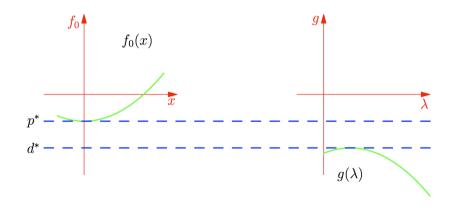
Dual problem

 $\begin{array}{ll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda) \\ \text{subject to} & f_i(x) \leqslant 0, \ i = 1, \dots, m, & \text{subject to} & \lambda_i \ge 0, \ i = 1, \dots, m, \end{array}$

- The primal optimal value is $p^* = \inf \{f_0(x) \mid x \text{ satisfies all constraints} \}$.
- x^* is an primal optimal point if x^* is feasible and $f(x^*) = p^*$.
- The dual optimal value is $d^* = \sup\{g(\lambda) \mid \lambda_i \ge 0, i = 1, ..., m\}$.
- λ^* is a dual optimal point if $\lambda_i^* \ge 0$, i = 1, ..., m and $g(\lambda^*) = d^*$.
 - λ_i^* 's are also called **optimal Lagrange multipliers**.

- For any optimization problem, we have $p^* \ge d^*$.
- This is called weak duality.

Weak Duality – Illustrated

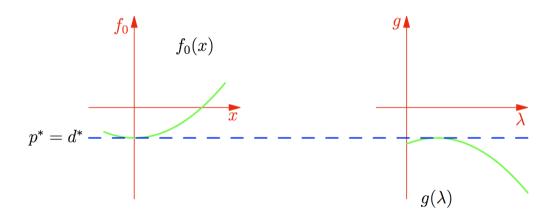


We always have weak duality: $p^* \ge d^*$.

Plot courtesy of Brett Bernstein.

- For some problems, we have strong duality: $p^* = d^*$.
- For *convex* problems, strong duality is fairly typical.

Strong Duality – Illustrated



Under certain conditions, we have strong duality: $p^* = d^*$.

Plot courtesy of Brett Bernstein.

- Suppose λ^* is the dual optimal solution.
- Does this help us find x*, the primal optimal solution?
- In general, it may not be easy to go from λ^* to x^* .
- It depends on the form of the primal problem.
- For SVMs, we'll see that it's easy to go from dual to primal solution.

Convex Optimization

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leqslant 0, \ i = 1, \dots, m \end{array}$

where f_0, \ldots, f_m are convex functions.

Slater's Constraint Qualifications for Strong Duality

- For a **convex** optimization problem over domain \mathbf{R}^n ,
- a sufficient condition for strong duality is

 $\exists x \in \mathbf{R}^d$ such that $f_i(x) < 0$ for i = 1, ..., m.

• Such an x is called a strictly feasible point.

Consequences of Strong Duality

Complementary Slackness

• If we have strong duality, we get an interesting relationship between

- the optimal Lagrange multiplier λ_i^* and
- the *i*th constraint at the optimum: $f_i(x^*)$
- Relationship is called "complementary slackness":

$$\lambda_i^* f_i(x^*) = 0$$

• Implies that at optimum, at least one of the following is satisfied:

$$\lambda_i^* = 0$$

 $f_i(x^*) = 0$ (constraint is "active")