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Big Feature Spaces for Linear Models
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The Input Space X

Our general learning theory setup: no assumptions about X
But X= Rd for the specific methods we’ve developed:

Ridge regression
Lasso regression
Support Vector Machines

Our hypothesis space for these was all affine functions on Rd :

F =
{
x 7→ wT x +b | w ∈ Rd ,b ∈ R

}
.

What if we want to do prediction on inputs not natively in Rd?

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 20, 2018 4 / 69



Feature Extraction

Definition

Mapping an input from X to a vector in Rd is called feature extraction or featurization.
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Linear Models with Explicit Feature Map

Input space: X (no assumptions)
Introduce feature map ψ : X→ Rd

The feature map maps into the feature space Rd .
Hypothesis space of affine functions on feature space:

F =
{
x 7→ wTψ(x)+b | w ∈ Rd ,b ∈ R

}
.
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Geometric Example: Two class problem, nonlinear boundary

With identity feature map ψ(x) = (x1,x2) and linear models, can’t separate regions
With appropriate featurization ψ(x) =

(
x1,x2,x

2
1 + x2

2
)
, becomes linearly separable .

Video: http://youtu.be/3liCbRZPrZA
From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Expressivity of Hypothesis Space

For linear models, to grow the hypothesis spaces, we must add features.

Sometimes we say a larger hypothesis is “more expressive”.
(can fit more relationships between input and action)

The previous lecture on “Features” suggests many ways to create new features.
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Example: Monomial Interaction Terms

Suppose we start with x = (1,x1, . . . ,xd) ∈ Rd+1 = X.

To get a more expressive hypothesis space, we want to add interaction terms.

Consider adding all monomials of degree M: xp1
1 · · ·x

pd
d , with p1+ · · ·+pd =M.

How many features will we end up with?(
M+d−1

M

)
(“flower shop problem” from combinatorics)

For d = 40 and M = 8, we get 314457495 features.

That will make some extremely large data matrices...
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Big Feature Spaces

Very large feature spaces have two potential issues:
1 Overfitting
2 Memory and computational costs

Overfitting we handle with regularization.

“Kernel methods” can (sometimes) help with memory and computational costs.
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Kernel Methods: Motivation
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SVM with Explicit Feature Map

Let ψ : X→ Rd be a feature map.
The SVM optimization problem (with explicit feature map):

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yiw

Tψ(xi )
)
.

Last time we mentioned an equivalent optimization problem from Lagrangian duality...
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SVM Dual Problem

By Lagrangian duality, it is equivalent to solve the following optimization problem:

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjψ(xj)
T ψ(xi )

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

If α∗ is an optimal value, then

w∗ =
n∑

i=1

α∗i yiψ(xi ) and f̂ (x) =
n∑

i=1

α∗i yiψ(xi )
Tψ(x).

Notice: ψ(x) only shows up in an inner products with another ψ(x ′).
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Some Methods Can Be “Kernelized”

Definition
A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x ′). This applies to both the optimization problem and the prediction
function.

The SVM Dual is a kernelization of the original SVM formulation.

We’ll now introduce some special notation for these inner products 〈ψ(x),ψ(x ′)〉...
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The Kernel Function

Input space: X
Feature space: H (a Hilbert space, i.e. an inner product space with projections, e.g. Rd)
Feature map: ψ : X→H

The kernel function corresponding to ψ is

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
,

where 〈·, ·〉 is the inner product associated with H.
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The Kernel Function: Why do we need this?

Feature map: ψ : X→H

The kernel function corresponding to ψ is

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
.

Why introduce this new notation k(x ,x ′)?

We can often evaluate k(x ,x ′) without explicitly computing ψ(x) and ψ(x ′).

For large feature spaces, can be much faster.
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Kernel Evaluation Can Be Fast

Example

Quadratic feature map for x = (x1, . . . ,xd) ∈ Rd .

ψ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

has dimension O(d2), but for any x ,x ′ ∈ Rd and the standard Euclidean dot products,

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
=
〈
x ,x ′

〉
+
〈
x ,x ′

〉2
Explicit computation of k(x ,x ′): O(d2)

Implicit computation of k(x ,x ′): O(d)
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Kernels as Similarity Scores

Often useful to think of the kernel function as a similarity score.

But this is not a mathematically precise statement.

There are many ways to design a similarity score.

We will use kernel functions that correspond to inner products in some feature space.

These are called Mercer kernels.
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What are the Benefits of Kernelization?

1 Computational (when optimizing over Rn is better than over Rd)).
2 Can sometimes avoid any O(d) operations

allows access to infinite-dimensional feature spaces.
3 Allows thinking in terms of “similarity” rather than features.
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The Kernel Matrix

Definition
The kernel matrix for a kernel k on x1, . . . ,xn ∈ X is

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)

 ∈ Rn×n.

In ML this is also called a Gram matrix, but traditionally (in linear algebra),
Gram matrices are defined without reference to a kernel or feature map.
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The Kernel Matrix

The kernel matrix summarizes all the information we need about the training inputs
x1, . . . ,xn to solve a kernelized optimization problem.

e.g. in the kernelized SVM, we can replace ψ(xi )Tψ(xj) with Kij :

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjKij

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
i = 1, . . . ,n.
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The “Kernel Trick”

1 Given a kernelized ML algorithm (i.e. all ψ(x)’s show up as 〈ψ(x),ψ(x ′)〉).
2 Can swap out the inner product for a new kernel function.
3 New kernel may correspond to a very high-dimensional feature space.
4 Once the kernel matrix is computed, the computational cost depends on number of data

points, rather than the dimension of feature space.

The trick is that once you’ve implemented your method in terms of a kernel matrix, you can go
from a kernel corresponding to a very small feature vector to a kernel corresponding to a very
large (even infinite dimensional) feature vector, without changing your code, just by swapping
one kernel matrix for another. Runtime is unaffected, after the kernel matrix is computed.
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Our Plan

Present our principal tool for kernelization: the representer theorem

To keep things clean, we’ll drop the explicit feature map until we need it: ψ(x) = x .

Discuss specific cases of kernel ridge regression and kernel SVM

Discuss several kernels, including the famous RBF kernel.

Discuss how to create a kernel without an explicit feature map.
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The Representer Theorem to Kernelize
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The Representer Theorem

Theorem (Representer Theorem)

Let
J(w) = R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

where
w ,x1, . . . ,xn ∈H for some Hilbert space H. (We typically have H = Rd .)

‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=
√
〈w ,w〉)

R : [0,∞)→ R is nondecreasing (Regularization term), and
L : Rn→ R is arbitrary (Loss term).

If J(w) has a minimizer, then it has a minimizer of the form w∗ =
∑n

i=1αixi .
[If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]
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Rewriting the Objective Function

Define the training score function s : Rd → Rn by

s(w) =

〈w ,x1〉
...

〈w ,xn〉

 ,

which gives the training score vector for any w .

We can then rewrite the objective function as

J(w) = R (‖w‖)+L(s(w)) ,

where now L : Rn×1→ R takes a column vector as input.

This will allow us to have a slick reparametrized version...
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Reparametrize the Generalized Objective

By the Representer Theorem, it’s sufficient to minimize J(w) for w of the form
∑n

i=1αixi .
Plugging this form into J(w), we see we can just minimize

J0(α) = R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(
s

(
n∑

i=1

αixi

))

over α= (α1, . . . ,αn)
T ∈ Rn×1.

With some new notation, we can substantially simplify
the norm piece ‖w‖= ‖

∑n
i=1αixi‖, and

the score piece s(w) = s (
∑n

i=1αixi ).
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Simplifying the Reparametrized Norm

For the norm piece ‖w‖= ‖
∑n

i=1αixi‖, we have

‖w‖2 = 〈w ,w〉

=

〈
n∑

i=1

αixi ,
n∑

j=1

αjxj

〉

=

n∑
i ,j=1

αiαj 〈xi ,xj〉 .

This expression involves the n2 inner products between all pairs of input vectors.
We often put those values together into a matrix...
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The Gram Matrix

Definition
The Gram matrix of a set of points x1, . . . ,xn in an inner product space is defined as

K =
(
〈xi ,xj〉

)
i ,j

=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 .

This is the traditional definition from linear algebra.
The Gram matrix is a special case of a kernel matrix for the identity feature map.
That’s why we write K for the Gram matrix instead of G , as done in elsewhere.
NOTE: In ML, we often use Gram matrix and kernel matrix to mean the same thing.
Don’t get too hung up on the definitions.
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Example: Gram Matrix for the Dot Product

Consider x1, . . . ,xn ∈ Rd×1 with the standard inner product 〈x ,x ′〉= xT x ′.
Let X ∈ Rn×d be the design matrix, which has each input vector as a row:

X =

−xT1 −
...

−xTn −

 .

Then the Gram matrix is

K =

xT1 x1 · · · xT1 xn
...

. . . · · ·
xTn x1 · · · xTn xn

 =

−xT1 −
...

−xTn −


 | · · · |

x1 · · · xn
| · · · |


= XXT
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Simplifying the Reparametrized Norm

With w =
∑n

i=1αixi , we have

‖w‖2 = 〈w ,w〉

=

〈
n∑

i=1

αixi ,
n∑

j=1

αjxj

〉

=

n∑
i ,j=1

αiαj 〈xi ,xj〉

= αTKα.
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Simplifying the Training Score Vector

The score for xj for w =
∑n

i=1αixi is

〈w ,xj〉 =

〈
n∑

i=1

αixi ,xj

〉
=

n∑
i=1

αi 〈xi ,xj〉

The training score vector is

s

(
n∑

i=1

αixi

)
=


∑n

i=1αi 〈xi ,x1〉
...∑n

i=1αi 〈xi ,xn〉

 =

α1 〈x1,x1〉+ · · ·+αn 〈xn,x1〉
...

α1 〈x1,xn〉+ · · ·+αn 〈xn,xn〉


=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉


α1

...
αn


= Kα
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Reparametrized Objective

Putting it all together, our reparametrized objective function can be written as

J0(α) = R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(
s

(
n∑

i=1

αixi

))
= R

(√
αTKα

)
+L(Kα) ,

which we minimize over α ∈ Rn.
All information needed about x1, . . . ,xn is summarized in the Gram matrix K .
We’re now minimizing over Rn rather than Rd .
If d � n, this can be a big win computationally (at least once K is computed).
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Reparametrizing Predictions

Suppose we’ve found
α∗ ∈ argmin

α∈Rn
R
(√
αTKα

)
+L(Kα) .

Then we know w∗ =
∑n

i=1α
∗xi satisfies

w∗ ∈ argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) .

The prediction on a new point x ∈H is

f̂ (x) = 〈w∗,x〉 =
n∑

i=1

α∗i 〈xi ,x〉 .

To make a new prediction, we may need to touch all the training inputs x1, . . . ,xn.
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More Notation

It will be convenient to define the following column vector for any x ∈H:

kx =

〈x1,x〉
...

〈xn,x〉


Then we can write our predictions on a new point x as

f̂ (x) = kTx α
∗
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Summary So Far

Original plan:
Find w∗ ∈ argminw∈HR (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)
Predict with f̂ (x) = 〈w∗,x〉.

We showed that the following is equivalent:

Find α∗ ∈ argminα∈Rn R
(√
αTKα

)
+L(Kα)

Predict with f̂ (x) = kTx α
∗, where

K =

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 and kx =

〈x1,x〉
...

〈xn,x〉


Every element x ∈H occurs inside an inner products with a training input xi ∈H.
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Kernelization

Definition
A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x ′). This applies to both the optimization problem and the prediction
function.

Here we are using ψ(x) = x . Thus finding

α∗ ∈ argmin
α∈Rn

R
(√
αTKα

)
+L(Kα)

and making predictions with f̂ (x) = kTx α
∗ is a kernelization of finding

w∗ ∈ argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

and making predictions with f̂ (x) = 〈w∗,x〉.
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Kernelization

Once we have kernelized:
α∗ ∈ argminα∈Rn R

(√
αTKα

)
+L(Kα)

f̂ (x) = kTx α
∗

We can do the “kernel trick”.

Replace each 〈x ,x ′〉 by k(x ,x ′), for any kernel function k , where k(x ,x ′) = 〈ψ(x),ψ(x ′)〉.

Predictions

f̂ (x) =
n∑

i=1

α∗i k(xi ,x)
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Kernel Ridge Regression
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Kernelizing Ridge Regression

Ridge Regression:

min
w∈Rd

1
n
‖Xw − y‖2+λ‖w‖2

Plugging in w =
∑n

i=1αixi , we get the kernelized ridge regression objective function:

min
α∈Rn

1
n
‖Kα− y‖2+λαTKα

This is usually just called kernel ridge regression.
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Kernel Ridge Regression Solutions

For λ > 0, the ridge regression solution is

w∗ = (XTX +λI )−1XT y

and the kernel ridge regression solution is

α∗ = (XXT +λI )−1y

= (K +λI )−1y

(Shown in homework.)
For ridge regression we’re dealing with a d ×d matrix.
For kernel ridge regression we’re dealing an n×n matix.
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Predictions

Predictions in terms of w∗:
f̂ (x) = xTw∗

Predictions in terms of α∗:

f̂ (x) = kTx α
∗ =

n∑
i=1

α∗i x
T
i x

For kernel ridge regression, need to access all training inputs x1, . . . ,xn to predict.
For SVM, we may not...
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Kernel SVM
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Kernelized SVM (From Representer Theorem)

The SVM objective:

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yiw

T xi
)
.

Plugging in w =
∑n

i=1αixi , we get

min
α∈Rn

1
2
αTKα+

c

n

n∑
i=1

max(0,1− yi (Kα)i )

Predictions with

f̂ (x) = xTw∗ =
n∑

i=1

α∗i x
T
i x .

This is one way to kernelize SVM...
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Kernelized SVM (From Lagrangian Duality)

Kernelized SVM from computing the Lagrangian Dual Problem:

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

If α∗ is an optimal value, then

w∗ =
n∑

i=1

α∗i yixi and f̂ (x) =
n∑

i=1

α∗i yix
T
i x .

Note that the prediction function is also kernelized.
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Sparsity in the Data from Complementary Slackness

Kernelized predictions given by

f̂ (x) =
n∑

i=1

α∗i yix
T
i x .

By a Lagrangian duality analysis (specifically from complementary slackness), we find

yi f̂ (xi )< 1 =⇒ α∗i =
c

n

yi f̂ (xi ) = 1 =⇒ α∗i ∈
[
0,
c

n

]
yi f̂ (xi )> 1 =⇒ α∗i = 0

So we can leave out any xi “on the good side of the margin” (yi f̂ (xi )> 1).
xi ’s that we must keep, because α∗i 6= 0, are called support vectors.
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Kernels
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Linear Kernel

Input space: X= Rd

Feature space: H = Rd , with standard inner product
Feature map

ψ(x) = x

Kernel:
k(x ,x ′) = xT x ′
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Quadratic Kernel in Rd

Input space X= Rd

Feature space: H = RD , where D = d +
(
d
2

)
≈ d2/2.

Feature map:

ψ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

Then for ∀x ,x ′ ∈ Rd

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
=

〈
x ,x ′

〉
+
〈
x ,x ′

〉2
Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.
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Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(x ,x ′) =

(
1+
〈
x ,x ′

〉)M
Corresponds to a feature map with all monomials up to degree M.
For any M, computing the kernel has same computational cost
Cost of explicit inner product computation grows rapidly in M.
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The RBF Kernel
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Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(x ,x ′) = exp

(
−
‖x − x ′‖2

2σ2

)
,

where σ2 is known as the bandwidth parameter.
Does it act like a similarity score?
Why “radial”?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinite dimensional feature vector

Probably the most common nonlinear kernel.
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RBF Basis

Input space X= R
Output space: Y= R

RBF kernel k(w ,x) = exp
(
−(w − x)2

)
.

Suppose we have 6 training examples: xi ∈ {−6,−4,−3,0,2,4}.
If representer theorem applies, then

f (x) =
6∑

i=1

αik(xi ,x).

f is a linear combination of 6 basis functions of form k(xi , ·):
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RBF Predictions

Basis functions

Predictions of the form f (x) =
∑6

i=1αik(xi ,x):

When kernelizing with RBF kernel, prediction functions always look this way.
(Whether we get w from SVM, ridge regression, etc...)
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RBF Feature Space: The Sequence Space `2

To work with infinite dimensional feature vectors, we need a space with certain properties.
an inner product
a norm related to the inner product
projection theorem: x = x⊥+ x‖ where x‖ ∈ S = span(w1, . . . ,wn) and 〈x⊥,s〉= 0 ∀s ∈ S .

Basically, we need a Hilbert space.

Definition

`2 is the space of all real-valued sequences: (x0,x1,x2,x3, . . .) with
∑∞

i=0 x
2
i <∞.

Theorem
With the the inner product 〈x ,x ′〉=

∑∞
i=0 xix

′
i , `2 is a Hilbert space.
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The Infinite Dimensional Feature Vector for RBF

Consider RBF kernel (1-dim): k(x ,x ′) = exp
(
−(x − x ′)2 /2

)
We claim that ψ : R→ `2, defined by

[ψ(x)]j =
1√
j!
e−x2/2x j

gives the “infinite-dimensional feature vector” corresponding to RBF kernel.
Is this mapping even well-defined? Is ψ(x) even an element of `2?
Yes: ∞∑

j=0

1
j!
e−x2

x2j = e−x2
∞∑
j=0

(
x2
)j

j!
= 1<∞

.
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The Infinite Dimensional Feature Vector for RBF

Does feature vector [ψ(x)]n =
1√
j!
e−x2/2x j actually correspond to the RBF kernel?

Yes! Proof:

〈
ψ(x),ψ(x ′)

〉
=

∞∑
j=0

1
j!
e−(x

2+(x ′)2)/2x j
(
x ′
)j

= e−(x
2+(x ′)2)/2

∞∑
j=0

(xx ′)j

j!

= exp
(
−
[
x2+

(
x ′
)2]
/2
)
exp
(
xx ′
)

= exp
(
−
[
(x − x ′)2/2

])
QED
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When is k(x ,x ′) a kernel function? (Mercer’s Theorem)
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How to Get Kernels?

1 Explicitly construct ψ(x) : X→ Rd and define k(x ,x ′) =ψ(x)Tψ(x ′).
2 Directly define the kernel function k(x ,x ′), and verify it corresponds to 〈ψ(x),ψ(x ′)〉 for

some ψ.

There are many theorems to help us with the second approach
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Positive Semidefinite Matrices

Definition

A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for any x ∈ Rn,

xTMx > 0.

Theorem
The following conditions are each necessary and sufficient for a symmetric matrix M to be
positive semidefinite:

M has can be factorized as M = RTR , for some matrix R .
All eigenvalues of M are greater than or equal to 0.
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Positive Semidefinite Function

Definition
A symmetric kernel function k : X×X→ R is positive semidefinite (psd) if for any finite set
{x1, . . . ,xn} ∈ X, the kernel matrix on this set

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)


is a positive semidefinite matrix.
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Mercer’s Theorem

Theorem
A symmetric function k(x ,x ′) can be expressed as an inner product

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
for some ψ if and only if k(x ,x ′) is positive semidefinite.
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Generating New Kernels from Old

Suppose k ,k1,k2 : X×X→ R are psd kernels. Then so are the following:

knew(x ,x ′) = k1(x ,x
′)+k2(x ,x

′)

knew(x ,x ′) = αk(x ,x ′)

knew(x ,x ′) = f (x)f (x ′) for any function f (·)
knew(x ,x ′) = k1(x ,x

′)k2(x ,x
′)

See Appendix for details.
Lots more theorems to help you construct new kernels from old...
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Details on New Kernels from Old [Optional]
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Additive Closure

Suppose k1 and k2 are psd kernels with feature maps φ1 and φ2, respectively.
Then

k1(x ,x
′)+k2(x ,x

′)

is a psd kernel.
Proof: Concatenate the feature vectors to get

φ(x) = (φ1(x),φ2(x)) .

Then φ is a feature map for k1+k2.
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Closure under Positive Scaling

Suppose k is a psd kernel with feature maps φ.
Then for any α > 0,

αk

is a psd kernel.
Proof: Note that

φ(x) =
√
αφ(x)

is a feature map for αk .
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Scalar Function Gives a Kernel

For any function f (x),
k(x ,x ′) = f (x)f (x ′)

is a kernel.
Proof: Let f (x) be the feature mapping. (It maps into a 1-dimensional feature space.)〈

f (x), f (x ′)
〉
= f (x)f (x ′) = k(x ,x ′).
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Closure under Hadamard Products

Suppose k1 and k2 are psd kernels with feature maps φ1 and φ2, respectively.
Then

k1(x ,x
′)k2(x ,x

′)

is a psd kernel.
Proof: Take the outer product of the feature vectors:

φ(x) = φ1(x) [φ2(x)]
T .

Note that φ(x) is a matrix.
Continued...
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Closure under Hadamard Products

Then 〈
φ(x),φ(x ′)

〉
=
∑
i ,j

φ(x)φ(x ′)

=
∑
i ,j

[
φ1(x) [φ2(x)]

T
]
ij

[
φ1(x

′)
[
φ2(x

′)
]T ]

ij

=
∑
i ,j

[φ1(x)]i [φ2(x)]j
[
φ1(x

′)
]
i

[
φ2(x

′)
]
j

=

(∑
i

[φ1(x)]i
[
φ1(x

′)
]
i

)∑
j

[φ2(x)]j
[
φ2(x

′)
]
j


= k1(x ,x

′)k2(x ,x
′)
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