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Estimating a Probability Distribution: Setting

Let p(y) represent a probability distribution on Y.
p(y) is unknown and we want to estimate it.
Assume that p(y) is either a

probability density function on a continuous space Y, or a
probability mass function on a discrete space Y.

Typical Y’s:
Y= R; Y= Rd [typical continuous distributions]
Y= {−1,1} [e.g. binary classification]
Y= {0,1,2, . . . ,K } [e.g. multiclass problem]
Y= {0,1,2,3,4 . . .} [unbounded counts]
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Evaluating a Probability Distribution Estimate

Before we talk about estimation, let’s talk about evaluation.
Somebody gives us an estimate of the probability distribution

p̂(y).

How can we evaluate how good it is?
We want p̂(y) to be descriptive of future data.
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Likelihood of a Predicted Distribution

Suppose we have

D= (y1, . . . ,yn) sampled i.i.d. from true distribution p(y).

Then the likelihood of p̂ for the data D is defined to be

p̂(D) =

n∏
i=1

p̂(yi ).

If p̂ is a probability mass function, then likelihood is probability.
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Parametric Families of Distributions
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Parametric Models

Definition
A parametric model is a set of probability distributions indexed by a parameter θ ∈Θ. We
denote this as

{p(y ;θ) | θ ∈Θ} ,

where θ is the parameter and Θ is the parameter space.

Below we’ll give some examples of common parametric models.
But it’s worth doing research to find a parametric model most appropriate for your data.

We’ll sometimes say family of distributions for a probability model.
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Poisson Family

Support Y= {0,1,2,3, . . .}.
Parameter space: {λ ∈ R | λ > 0}
Probability mass function on k ∈ Y:

p(k;λ) = λke−λ/(k!)

Figure is "Poisson pmf" by Skbkekas - Own work. Licensed under CC BY 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Poisson_pmf.svg#/media/File:Poisson_pmf.svg.
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Beta Family

Support Y= (0,1). [The unit interval.]
Parameter space: {θ= (α,β) | α,β > 0}
Probability density function on y ∈ Y:

p(y ;a,b) =
yα−1 (1− y)β−1

B(α,β)

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons.
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Gamma Family

Support Y= (0,∞). [Positive real numbers]
Parameter space: {θ= (k,θ) | k > 0,θ > 0}
Probability density function on y ∈ Y:

p(y ;k ,θ) =
1

Γ(k)θk
xk−1e−y/θ.

Special cases: exponential distribution, chi-squared distribution, Erlang distribution

Figure from Wikipedia https://commons.wikimedia.org/wiki/File:Gamma_distribution_pdf.svg.
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Likelihood in a Parametric Model

Suppose we have a parametric model {p(y ;θ) | θ ∈Θ} and a sample D= (y1, . . . ,yn).

The likelihood of parameter estimate θ̂ ∈Θ for sample D is

p(D; θ̂) =
n∏

i=1

p(yi ; θ̂).

In practice, we prefer to work with the log-likelihood. Same maximizer, but

logp(D; θ̂) =
n∑

i=1

logp(yi ; θ̂),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

Suppose D= (y1, . . . ,yn) is an i.i.d. sample from some distribution.

Definition
A maximum likelihood estimator (MLE) for θ in the model {p(y ;θ) | θ ∈Θ} is

θ̂ ∈ argmax
θ∈Θ

logp(D, θ̂)

= argmax
θ∈Θ

n∑
i=1

logp(yi ;θ).
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Maximum Likelihood Estimation

Finding the MLE is an optimization problem.

For some model families, calculus gives a closed form for the MLE.

Can also use numerical methods we know (e.g. SGD).
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MLE Existence

In certain situations, the MLE may not exist.
But there is usually a good reason for this.

e.g. Gaussian family
{
N(µ,σ2) | µ ∈ R,σ2 > 0

}
We have a single observation y .
Is there an MLE?

Taking µ= y and σ2 → 0 drives likelihood to infinity.
MLE doesn’t exist.
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Example: MLE for Poisson

Observed counts D= (k1, . . . ,kn) for taxi cab pickups over n weeks.
ki is number of pickups at Penn Station Mon, 7-8pm, for week i .

We want to fit a Poisson distribution to this data.
The Poisson log-likelihood for a single count is

log [p(k;λ)] = log

[
λke−λ

k!

]
= k logλ−λ− log (k!)

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)] .
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Example: MLE for Poisson

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)]

First order condition gives

0=
∂

∂λ
[logp(D,λ)] =

n∑
i=1

[
ki
λ
−1

]

=⇒ λ =
1
n

n∑
i=1

ki

So MLE λ̂ is just the mean of the counts.
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Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method Test Log-Likelihood
Poisson −392.16

Negative Binomial −188.67
Histogram (Bin width = 7) −∞
.95 Histogram +.05 NegBin −203.89
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Estimating Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE can overfit!
Example Probability Models:

F = {Poisson distributions}.
F = {Negative binomial distributions}.
F ={Histogram with 10 bins}
F ={Histogram with bin for every y ∈ Y} [will likely overfit for continuous data]

How to judge which model works the best?
Choose the model with the highest likelihood on validation set.
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