Maximum Likelihood Estimation

David S. Rosenberg

New York University

February 21, 2018
Contents

1. Likelihood of an Estimated Probability Distribution

2. Parametric Families of Distributions

3. Maximum Likelihood Estimation
Likelihood of an Estimated Probability Distribution
Let $p(y)$ represent a probability distribution on Y.

$p(y)$ is unknown and we want to estimate it.

Assume that $p(y)$ is either a probability density function on a continuous space Y, or a probability mass function on a discrete space Y.

Typical Y’s:

- $Y = \mathbb{R}$; $Y = \mathbb{R}^d$ [typical continuous distributions]
- $Y = \{-1, 1\}$ [e.g. binary classification]
- $Y = \{0, 1, 2, \ldots, K\}$ [e.g. multiclass problem]
- $Y = \{0, 1, 2, 3, 4 \ldots\}$ [unbounded counts]
Before we talk about estimation, let’s talk about evaluation.

Somebody gives us an estimate of the probability distribution

\[\hat{p}(y). \]

How can we evaluate how good it is?

We want \(\hat{p}(y) \) to be descriptive of future data.
Likelihood of a Predicted Distribution

- Suppose we have

\[D = (y_1, \ldots, y_n) \text{ sampled i.i.d. from true distribution } p(y). \]

- Then the likelihood of \(\hat{p} \) for the data \(D \) is defined to be

\[\hat{p}(D) = \prod_{i=1}^{n} \hat{p}(y_i). \]

- If \(\hat{p} \) is a probability mass function, then likelihood is probability.
Parametric Families of Distributions
Parametric Models

Definition

A parametric model is a set of probability distributions indexed by a parameter $\theta \in \Theta$. We denote this as

$$ \{ p(y; \theta) \mid \theta \in \Theta \}, $$

where θ is the parameter and Θ is the parameter space.

- Below we’ll give some examples of common parametric models.
- But it’s worth doing research to find a parametric model most appropriate for your data.
- We’ll sometimes say family of distributions for a probability model.
Poisson Family

- Support $\mathcal{Y} = \{0, 1, 2, 3, \ldots\}$.
- Parameter space: $\{\lambda \in \mathbb{R} \mid \lambda > 0\}$
- Probability mass function on $k \in \mathcal{Y}$:

$$p(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$
Beta Family

- Support $\mathcal{Y} = (0, 1)$. [The unit interval.]
- Parameter space: $\{\theta = (\alpha, \beta) \mid \alpha, \beta > 0\}$
- Probability density function on $y \in \mathcal{Y}$:

$$p(y; a, b) = \frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)}$$

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons.
Gamma Family

- **Support** \(y = (0, \infty) \). [Positive real numbers]
- **Parameter space:** \(\{\theta = (k, \theta) \mid k > 0, \theta > 0\} \)
- **Probability density function** on \(y \in y \):

\[
p(y; k, \theta) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}.
\]

- **Special cases:** exponential distribution, chi-squared distribution, Erlang distribution

Figure from Wikipedia https://commons.wikimedia.org/wiki/File:Gamma_distribution_pdf.svg.
Maximum Likelihood Estimation
Likelihood in a Parametric Model

Suppose we have a parametric model \(\{p(y; \theta) \mid \theta \in \Theta\} \) and a sample \(\mathcal{D} = (y_1, \ldots, y_n) \).

- The **likelihood** of parameter estimate \(\hat{\theta} \in \Theta \) for sample \(\mathcal{D} \) is

\[
p(\mathcal{D}; \hat{\theta}) = \prod_{i=1}^{n} p(y_i; \hat{\theta}).
\]

- In practice, we prefer to work with the **log-likelihood**. Same maximizer, but

\[
\log p(\mathcal{D}; \hat{\theta}) = \sum_{i=1}^{n} \log p(y_i; \hat{\theta}),
\]

and sums are easier to work with than products.
Suppose $\mathcal{D} = (y_1, \ldots, y_n)$ is an i.i.d. sample from some distribution.

Definition

A **maximum likelihood estimator (MLE)** for θ in the model $\{p(y; \theta) \mid \theta \in \Theta\}$ is

$$
\hat{\theta} \in \arg \max_{\theta \in \Theta} \log p(\mathcal{D}, \hat{\theta})
$$

$$
= \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log p(y_i; \theta).
$$
Finding the MLE is an optimization problem.

For some model families, calculus gives a closed form for the MLE.

Can also use numerical methods we know (e.g. SGD).
In certain situations, the MLE may not exist. But there is usually a good reason for this. e.g. Gaussian family \(\mathcal{N}(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 > 0 \) We have a single observation \(y \). Is there an MLE? Taking \(\mu = y \) and \(\sigma^2 \to 0 \) drives likelihood to infinity. MLE doesn’t exist.
Example: MLE for Poisson

- Observed counts $\mathcal{D} = (k_1, \ldots, k_n)$ for taxi cab pickups over n weeks. k_i is number of pickups at Penn Station Mon, 7-8pm, for week i.
- We want to fit a Poisson distribution to this data.
- The Poisson log-likelihood for a single count is

$$
\log [p(k; \lambda)] = \log \left[\frac{\lambda^k e^{-\lambda}}{k!} \right]
= k \log \lambda - \lambda - \log (k!)
$$

- The full log-likelihood is

$$
\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} \left[k_i \log \lambda - \lambda - \log (k_i!) \right].
$$
Example: MLE for Poisson

- The full log-likelihood is

\[
\log p(D, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]
\]

- First order condition gives

\[
0 = \frac{\partial}{\partial \lambda} \log p(D, \lambda) = \sum_{i=1}^{n} \left[\frac{k_i}{\lambda} - 1 \right]
\]

\[
\implies \lambda = \frac{1}{n} \sum_{i=1}^{n} k_i
\]

- So MLE \(\hat{\lambda} \) is just the mean of the counts.
Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

<table>
<thead>
<tr>
<th>Method</th>
<th>Test Log-Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>-392.16</td>
</tr>
<tr>
<td>Negative Binomial</td>
<td>-188.67</td>
</tr>
<tr>
<td>Histogram (Bin width = 7)</td>
<td>$-\infty$</td>
</tr>
<tr>
<td>$.95$ Histogram + $.05$ NegBin</td>
<td>-203.89</td>
</tr>
</tbody>
</table>
Just as in classification and regression, MLE can overfit!

Example Probability Models:
- \(\mathcal{F} = \{ \text{Poisson distributions} \} \).
- \(\mathcal{F} = \{ \text{Negative binomial distributions} \} \).
- \(\mathcal{F} = \{ \text{Histogram with 10 bins} \} \).
- \(\mathcal{F} = \{ \text{Histogram with bin for every } y \in Y \} \) [will likely overfit for continuous data]

How to judge which model works the best?

Choose the model with the highest likelihood on validation set.