Maximum Likelihood Estimation

David S. Rosenberg

New York University

February 21, 2018

David S. Rosenberg (New York University)

Likelihood of an Estimated Probability Distribution

2 Parametric Families of Distributions

3 Maximum Likelihood Estimation

Likelihood of an Estimated Probability Distribution

Estimating a Probability Distribution: Setting

- Let p(y) represent a probability distribution on \mathcal{Y} .
- p(y) is **unknown** and we want to **estimate** it.
- Assume that p(y) is either a
 - $\bullet\,$ probability density function on a continuous space ${\mathfrak Y},$ or a
 - probability mass function on a discrete space y.
- Typical Y's:
 - $\mathcal{Y} = \mathbf{R}; \ \mathcal{Y} = \mathbf{R}^d$ [typical continuous distributions]
 - $\mathcal{Y} = \{-1, 1\}$ [e.g. binary classification]
 - $\mathcal{Y} = \{0, 1, 2, \dots, K\}$ [e.g. multiclass problem]
 - $\mathcal{Y} = \{0, 1, 2, 3, 4...\}$ [unbounded counts]

Evaluating a Probability Distribution Estimate

- Before we talk about estimation, let's talk about evaluation.
- Somebody gives us an estimate of the probability distribution

 $\hat{p}(y)$.

- How can we evaluate how good it is?
- We want $\hat{p}(y)$ to be descriptive of **future** data.

Likelihood of a Predicted Distribution

• Suppose we have

 $\mathcal{D} = (y_1, \ldots, y_n)$ sampled i.i.d. from true distribution p(y).

• Then the likelihood of \hat{p} for the data \mathcal{D} is defined to be

$$\hat{\rho}(\mathcal{D}) = \prod_{i=1}^{n} \hat{\rho}(y_i).$$

• If \hat{p} is a probability mass function, then likelihood is probability.

Parametric Families of Distributions

Definition

A parametric model is a set of probability distributions indexed by a parameter $\theta \in \Theta$. We denote this as

 $\{p(y; \theta) \mid \theta \in \Theta\},\$

where θ is the **parameter** and Θ is the **parameter space**.

- Below we'll give some examples of common parametric models.
 - But it's worth doing research to find a parametric model most appropriate for your data.
- We'll sometimes say family of distributions for a probability model.

Poisson Family

- Support $\mathcal{Y} = \{0, 1, 2, 3, ...\}.$
- Parameter space: $\{\lambda \in \mathbf{R} \mid \lambda > 0\}$
- Probability mass function on $k \in \mathcal{Y}$:

 $p(k;\lambda) = \lambda^k e^{-\lambda}/(k!)$

Figure is "Poisson pmf" by Skbkekas - Own work. Licensed under CC BY 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Poisson_pmf.svg#/media/File:Poisson_pmf.svg.

Beta Family

- Support $\mathcal{Y} = (0, 1)$. [The unit interval.]
- Parameter space: $\{\theta = (\alpha, \beta) \mid \alpha, \beta > 0\}$
- Probability density function on $y \in \mathcal{Y}$:

$$p(y; a, b) = \frac{y^{\alpha - 1} (1 - y)^{\beta - 1}}{B(\alpha, \beta)}$$

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons.

Gamma Family

- Support $\mathcal{Y} = (0, \infty)$. [Positive real numbers]
- Parameter space: $\{\theta = (k, \theta) \mid k > 0, \theta > 0\}$
- Probability density function on $y \in \mathcal{Y}$:

$$p(y; k, \theta) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-y/\theta}.$$

• Special cases: exponential distribution, chi-squared distribution, Erlang distribution

Figure from Wikipedia https://commons.wikimedia.org/wiki/File:Gamma_distribution_pdf.svg.

Maximum Likelihood Estimation

Likelihood in a Parametric Model

Suppose we have a parametric model $\{p(y; \theta) \mid \theta \in \Theta\}$ and a sample $\mathcal{D} = (y_1, \dots, y_n)$.

• The likelihood of parameter estimate $\hat{\theta} \in \Theta$ for sample ${\mathfrak D}$ is

$$p(\mathcal{D};\hat{\theta}) = \prod_{i=1}^{n} p(y_i;\hat{\theta}).$$

• In practice, we prefer to work with the log-likelihood. Same maximizer, but

$$\log p(\mathcal{D}; \hat{\theta}) = \sum_{i=1}^{n} \log p(y_i; \hat{\theta}),$$

and sums are easier to work with than products.

Maximum Likelihood Estimation

• Suppose $\mathcal{D} = (y_1, \dots, y_n)$ is an i.i.d. sample from some distribution.

Definition

A maximum likelihood estimator (MLE) for θ in the model $\{p(y; \theta) \mid \theta \in \Theta\}$ is

$$\hat{\theta} \in \arg \max_{\theta \in \Theta} \log p(\mathcal{D}, \hat{\theta})$$

$$= \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log p(y_i; \theta).$$

- Finding the MLE is an optimization problem.
- For some model families, calculus gives a closed form for the MLE.
- Can also use numerical methods we know (e.g. SGD).

- In certain situations, the MLE may not exist.
- But there is usually a good reason for this.
- e.g. Gaussian family $\left\{ \mathfrak{N}(\mu,\sigma^2) \mid \mu \in \textbf{R}, \sigma^2 > 0 \right\}$
- We have a single observation y.
- Is there an MLE?
- Taking $\mu = y$ and $\sigma^2 \rightarrow 0$ drives likelihood to infinity.
- MLE doesn't exist.

Example: MLE for Poisson

- Observed counts $\mathcal{D} = (k_1, \dots, k_n)$ for taxi cab pickups over *n* weeks.
 - k_i is number of pickups at Penn Station Mon, 7-8pm, for week *i*.
- We want to fit a Poisson distribution to this data.
- The Poisson log-likelihood for a single count is

$$\log [p(k;\lambda)] = \log \left[\frac{\lambda^k e^{-\lambda}}{k!}\right]$$
$$= k \log \lambda - \lambda - \log (k!)$$

• The full log-likelihood is

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)].$$

Example: MLE for Poisson

• The full log-likelihood is

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]$$

• First order condition gives

$$0 = \frac{\partial}{\partial \lambda} \left[\log p(\mathcal{D}, \lambda) \right] = \sum_{i=1}^{n} \left[\frac{k_i}{\lambda} - 1 \right]$$
$$\implies \lambda = \frac{1}{n} \sum_{i=1}^{n} k_i$$

• So MLE $\hat{\lambda}$ is just the mean of the counts.

Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method	Test Log-Likelihood
Poisson	-392.16
Negative Binomial	-188.67
Histogram (Bin width $= 7$)	$-\infty$
.95 Histogram +.05 NegBin	-203.89

Estimating Distributions, Overfitting, and Hypothesis Spaces

- Just as in classification and regression, MLE can overfit!
- Example Probability Models:
 - $\mathcal{F} = \{ \mathsf{Poisson distributions} \}.$
 - $\mathcal{F} = \{ \text{Negative binomial distributions} \}.$
 - $\mathcal{F} = \{ \text{Histogram with 10 bins} \}$
 - $\mathcal{F} = \{\text{Histogram with bin for every } y \in \mathcal{Y}\}$ [will likely overfit for continuous data]
- How to judge which model works the best?
- Choose the model with the highest likelihood on validation set.