Bayesian Methods

David S. Rosenberg
New York University

March 20, 2018

Contents

(1) Classical Statistics
(2) Bayesian Statistics: Introduction
(3) Bayesian Decision Theory
(4) Summary

Classical Statistics

Parametric Family of Densities

- A parametric family of densities is a set

$$
\{p(y \mid \theta): \theta \in \Theta\}
$$

- where $p(y \mid \theta)$ is a density on a sample space y, and
- θ is a parameter in a [finite dimensional] parameter space Θ.
- This is the common starting point for a treatment of classical or Bayesian statistics.

Density vs Mass Functions

- In this lecture, whenever we say "density", we could replace it with "mass function."
- Corresponding integrals would be replaced by summations.
- (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t. different base measures.)

Frequentist or "Classical" Statistics

- Parametric family of densities

$$
\{p(y \mid \theta) \mid \theta \in \Theta\} .
$$

- Assume that $p(y \mid \theta)$ governs the world we are observing, for some $\theta \in \Theta$.
- If we knew the right $\theta \in \Theta$, there would be no need for statistics.
- Instead of θ, we have data $\mathcal{D}: y_{1}, \ldots, y_{n}$ sampled i.i.d. $p(y \mid \theta)$.
- Statistics is about how to get by with \mathcal{D} in place of θ.

Point Estimation

- One type of statistical problem is point estimation.
- A statistic $s=s(\mathcal{D})$ is any function of the data.
- A statistic $\hat{\theta}=\hat{\theta}(\mathcal{D})$ taking values in Θ is a point estimator of θ.
- A good point estimator will have $\hat{\theta} \approx \theta$.

Desirable Properties of Point Estimators

- Desirable statistical properties of point estimators:
- Consistency: As data size $n \rightarrow \infty$, we get $\hat{\theta}_{n} \rightarrow \theta$.
- Efficiency: (Roughly speaking) $\hat{\theta}_{n}$ is as accurate as we can get from a sample of size n.
- Maximum likelihood estimators are consistent and efficient under reasonable conditions.

The Likelihood Function

- Consider parametric family $\{p(y \mid \theta): \theta \in \Theta\}$ and i.i.d. sample $\mathcal{D}=\left(y_{1}, \ldots, y_{n}\right)$.
- The density for sample \mathcal{D} for $\theta \in \Theta$ is

$$
p(\mathcal{D} \mid \theta)=\prod_{i=1}^{n} p\left(y_{i} \mid \theta\right)
$$

- $p(\mathcal{D} \mid \theta)$ is a function of \mathcal{D} and θ.
- For fixed $\theta, p(\mathcal{D} \mid \theta)$ is a density function on y^{n}.
- For fixed \mathcal{D}, the function $\theta \mapsto p(\mathcal{D} \mid \theta)$ is called the likelihood function:

$$
L_{\mathcal{D}}(\theta):=p(\mathcal{D} \mid \theta) .
$$

Maximum Likelihood Estimation

Definition

The maximum likelihood estimator (MLE) for θ in the model $\{p(y, \theta) \mid \theta \in \Theta\}$ is

$$
\hat{\theta}_{\mathrm{MLE}}=\underset{\theta \in \Theta}{\arg \max } L_{\mathcal{D}}(\theta) .
$$

- Maximum likelihood is just one approach to getting a point estimator for θ.
- Method of moments is another general approach one learns about in statistics.
- Later we'll talk about MAP and posterior mean as approaches to point estimation.
- These arise naturally in Bayesian settings.

Coin Flipping: Setup

- Parametric family of mass functions:

$$
p(\text { Heads } \mid \theta)=\theta
$$

for $\theta \in \Theta=(0,1)$.

- Note that every $\theta \in \Theta$ gives us a different probability model for a coin.

Coin Flipping: Likelihood function

- Data $\mathcal{D}=(H, H, T, T, T, T, T, H, \ldots, T)$
- n_{h} : number of heads
- n_{t} : number of tails
- Assume these were i.i.d. flips.
- Likelihood function for data \mathcal{D} :

$$
L_{\mathcal{D}}(\theta)=p(\mathcal{D} \mid \theta)=\theta^{n_{h}}(1-\theta)^{n_{t}}
$$

- This is the probability of getting the flips in the order they were received.

Coin Flipping: MLE

- As usual, easier to maximize the log-likelihood function:

$$
\begin{aligned}
\hat{\theta}_{\mathrm{MLE}} & =\underset{\theta \in \Theta}{\arg \max } \log L_{\mathcal{D}}(\theta) \\
& =\underset{\theta \in \Theta}{\arg \max }\left[n_{h} \log \theta+n_{t} \log (1-\theta)\right]
\end{aligned}
$$

- First order condition:

$$
\begin{aligned}
\frac{n_{h}}{\theta}-\frac{n_{t}}{1-\theta} & =0 \\
\Longleftrightarrow \theta & =\frac{n_{h}}{n_{h}+n_{t}}
\end{aligned}
$$

- So $\hat{\theta}_{\text {MLE }}$ is the empirical fraction of heads.

Bayesian Statistics: Introduction

Bayesian Statistics

- Introduces a new ingredient: the prior distribution.
- A prior distribution $p(\theta)$ is a distribution on parameter space Θ.
- A prior reflects our belief about θ, before seeing any data.

A Bayesian Model

- A [parametric] Bayesian model consists of two pieces:
(1) A parametric family of densities

$$
\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}
$$

(2) A prior distribution $p(\theta)$ on parameter space Θ.

- Putting pieces together, we get a joint density on θ and \mathcal{D} :

$$
p(\mathcal{D}, \theta)=p(\mathcal{D} \mid \theta) p(\theta) .
$$

The Posterior Distribution

- The posterior distribution for θ is $p(\theta \mid \mathcal{D})$.
- Prior represents belief about θ before observing data \mathcal{D}.
- Posterior represents the rationally "updated" belief about θ, after seeing \mathcal{D}.

Expressing the Posterior Distribution

- By Bayes rule, can write the posterior distribution as

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}
$$

- Let's consider both sides as functions of θ, for fixed \mathcal{D}.
- Then both sides are densities on Θ and we can write

$$
\underbrace{p(\theta \mid \mathcal{D})}_{\text {posterior }} \propto \underbrace{p(\mathcal{D} \mid \theta)}_{\text {likelihood }} \underbrace{p(\theta)}_{\text {prior }} .
$$

- Where \propto means we've dropped factors independent of θ.

Coin Flipping: Bayesian Model

- Parametric family of mass functions:

$$
p(\text { Heads } \mid \theta)=\theta
$$

$$
\text { for } \theta \in \Theta=(0,1) \text {. }
$$

- Need a prior distribution $p(\theta)$ on $\Theta=(0,1)$.
- A distribution from the Beta family will do the trick...

Coin Flipping: Beta Prior

- Prior:

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons

Coin Flipping: Beta Prior

- Prior:

$$
\begin{aligned}
\theta & \sim \operatorname{Beta}(h, t) \\
p(\theta) & \propto \theta^{h-1}(1-\theta)^{t-1}
\end{aligned}
$$

- Mean of Beta distribution:

$$
\mathbb{E} \theta=\frac{h}{h+t}
$$

- Mode of Beta distribution:

$$
\underset{\theta}{\arg \max } p(\theta)=\frac{h-1}{h+t-2}
$$

for $h, t>1$.

Coin Flipping: Posterior

- Prior:

$$
\begin{aligned}
\theta & \sim \operatorname{Beta}(h, t) \\
p(\theta) & \propto \theta^{h-1}(1-\theta)^{t-1}
\end{aligned}
$$

- Likelihood function

$$
L(\theta)=p(\mathcal{D} \mid \theta)=\theta^{n_{h}}(1-\theta)^{n_{t}}
$$

- Posterior density:

$$
\begin{aligned}
p(\theta \mid \mathcal{D}) & \propto p(\theta) p(\mathcal{D} \mid \theta) \\
& \propto \theta^{h-1}(1-\theta)^{t-1} \times \theta^{n_{h}}(1-\theta)^{n_{t}} \\
& =\theta^{h-1+n_{h}}(1-\theta)^{t-1+n_{t}}
\end{aligned}
$$

Posterior is Beta

- Prior:

$$
\begin{aligned}
\theta & \sim \operatorname{Beta}(h, t) \\
p(\theta) & \propto \theta^{h-1}(1-\theta)^{t-1}
\end{aligned}
$$

- Posterior density:

$$
p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_{h}}(1-\theta)^{t-1+n_{t}}
$$

- Posterior is in the beta family:

$$
\theta \mid \mathcal{D} \sim \operatorname{Beta}\left(h+n_{h}, t+n_{t}\right)
$$

- Interpretation:

- Prior initializes our counts with h heads and t tails.
- Posterior increments counts by observed n_{h} and n_{t}.

Sidebar: Conjugate Priors

- Interesting that posterior is in same distribution family as prior.
- Let π be a family of prior distributions on Θ.
- Let P parametric family of distributions with parameter space Θ.

Definition

A family of distributions π is conjugate to parametric model P if for any prior in π, the posterior is always in π.

- The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.
- The family of all probability distributions is conjugate to any parametric model. [Trivially]

Example: Coin Flipping - Concrete Example

- Suppose we have a coin, possibly biased (parametric probability model):

$$
p(\text { Heads } \mid \theta)=\theta
$$

- Parameter space $\theta \in \Theta=[0,1]$.
- Prior distribution: $\theta \sim \operatorname{Beta}(2,2)$.

Example: Coin Flipping

- Next, we gather some data $\mathcal{D}=\{H, H, T, T, T, T, T, H, \ldots, T\}$:
- Heads: 75 Tails: 60
- $\hat{\theta}_{\mathrm{MLE}}=\frac{75}{75+60} \approx 0.556$
- Posterior distribution: $\theta \mid \mathcal{D} \sim \operatorname{Beta}(77,62)$:

Bayesian Point Estimates

- So we have posterior $\theta \mid \mathcal{D}$...
- But we want a point estimate $\hat{\theta}$ for θ.
- Common options:
- posterior mean $\hat{\theta}=\mathbb{E}[\theta \mid \mathcal{D}]$
- maximum a posteriori (MAP) estimate $\hat{\theta}=\arg \max _{\theta} p(\theta \mid \mathcal{D})$
- Note: this is the mode of the posterior distribution

What else can we do with a posterior?

- Look at it.
- Extract "credible set" for θ (Bayesian version of a confidence interval).
- e.g. Interval $[a, b]$ is a 95% credible set if

$$
\mathbb{P}(\theta \in[a, b] \mid \mathcal{D}) \geqslant 0.95
$$

- The most "Bayesian" approach is Bayesian decision theory:
- Choose a loss function.
- Find action minimizing expected risk w.r.t. posterior

Bayesian Decision Theory

Bayesian Decision Theory

- Ingredients:
- Parameter space Θ.
- Prior: Distribution $p(\theta)$ on Θ.
- Action space \mathcal{A}.
- Loss function: $\ell: \mathcal{A} \times \Theta \rightarrow \mathbf{R}$.
- The posterior risk of an action $a \in \mathcal{A}$ is

$$
\begin{aligned}
r(a) & :=\mathbb{E}[\ell(\theta, a) \mid \mathcal{D}] \\
& =\int \ell(\theta, a) p(\theta \mid \mathcal{D}) d \theta
\end{aligned}
$$

- It's the expected loss under the posterior.
- A Bayes action a^{*} is an action that minimizes posterior risk:

$$
r\left(a^{*}\right)=\min _{a \in \mathcal{A}} r(a)
$$

Bayesian Point Estimation

- General Setup:
- Data \mathcal{D} generated by $p(y \mid \theta)$, for unknown $\theta \in \Theta$.
- Want to produce a point estimate for θ.
- Choose the following:
- Prior $p(\theta)$ on $\Theta=\mathbf{R}$.
- Loss $\ell(\hat{\theta}, \theta)=(\theta-\hat{\theta})^{2}$
- Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk:

$$
\begin{aligned}
r(\hat{\theta}) & =\mathbb{E}\left[(\theta-\hat{\theta})^{2} \mid \mathcal{D}\right] \\
& =\int(\theta-\hat{\theta})^{2} p(\theta \mid \mathcal{D}) d \theta
\end{aligned}
$$

Bayesian Point Estimation: Square Loss

- Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$
r(\hat{\theta})=\int(\theta-\hat{\theta})^{2} p(\theta \mid \mathcal{D}) d \theta
$$

- Differentiate:

$$
\begin{aligned}
\frac{d r(\hat{\theta})}{d \hat{\theta}} & =-\int 2(\theta-\hat{\theta}) p(\theta \mid \mathcal{D}) d \theta \\
& =-2 \int \theta p(\theta \mid \mathcal{D}) d \theta+2 \hat{\theta} \underbrace{\int p(\theta \mid \mathcal{D}) d \theta}_{=1} \\
& =-2 \int \theta p(\theta \mid \mathcal{D}) d \theta+2 \hat{\theta}
\end{aligned}
$$

Bayesian Point Estimation: Square Loss

- Derivative of posterior risk is

$$
\frac{d r(\hat{\theta})}{d \hat{\theta}}=-2 \int \theta p(\theta \mid \mathcal{D}) d \theta+2 \hat{\theta} .
$$

- First order condition $\frac{d r(\hat{\theta})}{d \hat{\theta}}=0$ gives

$$
\begin{aligned}
\hat{\theta} & =\int \theta p(\theta \mid \mathcal{D}) d \theta \\
& =\mathbb{E}[\theta \mid \mathcal{D}]
\end{aligned}
$$

- Bayes action for square loss is the posterior mean.

Bayesian Point Estimation: Absolute Loss

- Loss: $\ell(\theta, \hat{\theta})=|\theta-\hat{\theta}|$
- Bayes action for absolute loss is the posterior median.
- That is, the median of the distribution $p(\theta \mid \mathcal{D})$.
- Show with approach similar to what was used in Homework \#1.

Bayesian Point Estimation: Zero-One Loss

- Suppose Θ is discrete (e.g. $\Theta=$ \{english, french $\}$)
- Zero-one loss: $\ell(\theta, \hat{\theta})=1(\theta \neq \hat{\theta})$
- Posterior risk:

$$
\begin{aligned}
r(\hat{\theta}) & =\mathbb{E}[1(\theta \neq \hat{\theta}) \mid \mathcal{D}] \\
& =\mathbb{P}(\theta \neq \hat{\theta} \mid \mathcal{D}) \\
& =1-\mathbb{P}(\theta=\hat{\theta} \mid \mathcal{D}) \\
& =1-p(\hat{\theta} \mid \mathcal{D})
\end{aligned}
$$

- Bayes action is

$$
\hat{\theta}=\underset{\theta \in \Theta}{\arg \max } p(\theta \mid \mathcal{D})
$$

- This $\hat{\theta}$ is called the maximum a posteriori (MAP) estimate.
- The MAP estimate is the mode of the posterior distribution.

Summary

Recap and Interpretation

- Prior represents belief about θ before observing data \mathcal{D}.
- Posterior represents the rationally "updated" beliefs after seeing \mathcal{D}.
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
- No issue of "choosing a procedure" or justifying an estimator.
- Only choices are
- family of distributions, indexed by Θ, and the
- prior distribution on Θ
- For decision making, need a loss function.
- Everything after that is computation.

The Bayesian Method

(1) Define the model:

- Choose a parametric family of densities:

$$
\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\} .
$$

- Choose a distribution $p(\theta)$ on Θ, called the prior distribution.
(2) After observing \mathcal{D}, compute the posterior distribution $p(\theta \mid \mathcal{D})$.
(3) Choose action based on $p(\theta \mid \mathcal{D})$.

