Bayesian Regression

David S. Rosenberg

New York University

March 20, 2018

Contents

1 Recap: Conditional Probability Models

2 Bayesian Conditional Probability Models

Recap: Conditional Probability Models

Parametric Family of Conditional Densities

• A parametric family of conditional densities is a set

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

- where $p(y | x, \theta)$ is a density on **outcome space** \mathcal{Y} for each x in **input space** \mathcal{X} , and
- θ is a parameter in a [finite dimensional] parameter space Θ .
- This is the common starting point for a treatment of classical or Bayesian statistics.

- In this lecture, whenever we say "density", we could replace it with "mass function."
- Corresponding integrals would be replaced by summations.
- (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t. different base measures.)

• A parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

- Assume that $p(y | x, \theta)$ governs the world we are observing, for some $\theta \in \Theta$.
- If we knew the right $\theta\in\Theta,$ there would be no need for statistics.
- Instead of θ , we have data \mathcal{D} ... how is it generated?

The Data: Assumptions So Far in this Course

- Our usual setup is that (x, y) pairs are drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.
- How have we used this assumption so far?
 - ties validation performance to test performance
 - ties test performance to performance on new data when deployed
 - motivates empirical risk minimization
- The large majority of things we've learned about ridge/lasso/elastic-net regression, optimization, SVMs, and kernel methods are true for arbitrary training data sets D: (x₁, y₁),..., (x_n, y_n) ∈ X × 𝔅.
 - $\bullet\,$ i.e. $\,\mathcal{D}$ could be created by hand, by an adversary, or randomly.
- We rely on the i.i.d. $\mathcal{P}_{\mathfrak{X}\times \mathfrak{Y}}$ assumption when it comes to generalization.

The Data: Conditional Probability Modeling

- \bullet To get generalization, we'll still need our usual i.i.d. $\mathfrak{P}_{\mathfrak{X}\times\mathfrak{Y}}$ assumption.
- This time, for developing the model, we'll make some assumptions about the training data...
- We do not need any assumptions on x's .
 - They can be random, chosen by hand, or chosen adversarially.
- For each input x_i,
 - we observe y_i sampled randomly from $p(y | x_i, \theta)$, for some unknown $\theta \in \Theta$.
- We assume the outcomes y_1, \ldots, y_n are independent.

Likelihood Function

- **Data:** $\mathcal{D} = (y_1, ..., , y_n)$
- $\bullet\,$ The probability density for our data ${\mathcal D}$ is

$$p(\mathcal{D} | x_1, \ldots, x_n, \theta) = \prod_{i=1}^n p(y_i | x_i, \theta).$$

• For fixed \mathcal{D} , the function $\theta \mapsto p(\mathcal{D} \mid x, \theta)$ is the likelihood function:

 $L_{\mathcal{D}}(\theta)$

• The maximum likelihood estimator (MLE) for θ in the model $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} L_{\mathcal{D}}(\theta).$$

Example: Gaussian Linear Regression

- Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$
- Family of conditional probability densities:

$$y \mid x, w \sim \mathcal{N}(w^T x, \sigma^2),$$

for some known $\sigma^2 > 0$.

- Parameter space? R^d .
- **Data:** $\mathcal{D} = (y_1, ..., y_n)$
- Assume y_i 's are independent.

Gaussian Likelihood and MLE

• The likelihood of $w \in \mathbf{R}^d$ for the data \mathcal{D} is given by the likelihood function:

$$L_{\mathcal{D}}(w) = \prod_{i=1}^{n} p(y_i | x_i, w) \quad \text{by conditional independence.}$$
$$= \prod_{i=1}^{n} \left[\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right) \right]$$

 \bullet You should see in your $head^1$ that the \mbox{MLE} is

$$\hat{w}_{\text{MLE}} = \arg \max_{w \in \mathbf{R}^d} L_{\mathcal{D}}(w)$$
$$= \arg \min_{w \in \mathbf{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2.$$

¹See https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf, slide 5.

DS-GA 1003 / CSCI-GA 2567

Bayesian Conditional Probability Models

Bayesian Conditional Models

- Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$
- Two components to Bayesian conditional model:
 - A parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

- A prior distribution for $\theta \in \Theta$.
- Prior distribution: $p(\theta)$ on $\theta \in \Theta$

• The posterior distribution for $\boldsymbol{\theta}$ is

$$p(\theta \mid \mathcal{D}, x_1, \dots, x_n) \propto p(\mathcal{D} \mid \theta, x_1, \dots, x_n) p(\theta)$$
$$= \underbrace{L_{\mathcal{D}}(\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

Gaussian Example: Priors and Posteriors

• Choose a Gaussian prior distribution p(w) on \mathbf{R}^d :

 $w \sim \mathcal{N}(0, \Sigma_0)$

for some covariance matrix $\Sigma_0 \succ 0$ (i.e. Σ_0 is spd).

Posterior distribution

$$p(w \mid \mathcal{D}, x_1, \dots, x_n) = p(w \mid \mathcal{D}, x_1, \dots, x_n)$$

$$\propto L_{\mathcal{D}}(w)p(w)$$

$$= \prod_{i=1}^n \left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)\right] \text{ (likelihood)}$$

$$\times |2\pi\Sigma_0|^{-1/2}\exp\left(-\frac{1}{2}w^T\Sigma_0^{-1}w\right) \text{ (prior)}$$

• We have a parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

- For fixed $\theta \in \Theta$, $p(y \mid x, \theta)$ is a conditional density, but
- For fixed $\theta \in \Theta$, $x \mapsto p(y \mid x, \theta)$ is also a **prediction function**:
 - maps any input $x \in \mathcal{X}$ to a density on \mathcal{Y}
- These prediction functions are usually called predictive distribution functions.
- As a set of prediction functions, $\{p(y | x, \theta) : \theta \in \Theta\}$ is a hypothesis space.

Bayesian Distributions on Hypothesis Space

- In Bayesian statistics we have two distributions on $\Theta\colon$
 - the prior distribution $p(\theta)$
 - the posterior distribution $p(\theta | \mathcal{D}, x_1, \dots, x_n)$.
- Each of these may be thought of as a distribution on the hypothesis space

 $\{p(y \mid x, \theta) : \theta \in \Theta\}.$