Bayesian Regression - Continued

David S. Rosenberg

New York University

March 27, 2018

Contents

1 Recap: Conditional Probability Models

- 2 Bayesian Conditional Probability Models
- 3 Gaussian Regression Example
- ④ Gaussian Regression Continued

Recap: Conditional Probability Models

Conditional Probability Modeling

- Input space $\boldsymbol{\mathfrak{X}}$
- Outcome space \mathcal{Y}
- Action space $\mathcal{A} = \{ p(y) \mid p \text{ is a probability distribution on } \mathcal{Y} \}.$
- Hypothesis space \mathcal{F} contains prediction functions $f: \mathcal{X} \to \mathcal{A}$.
- Prediction function $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- We've been discussing parametric families of conditional densities

 $\{p(y \mid x, \theta) : \theta \in \Theta\}.$

- These are also hypothesis spaces for conditional probability modeling.
- Examples?

Parametric Family of Conditional Densities

• A parametric family of conditional densities is a set

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

- where $p(y | x, \theta)$ is a density on **outcome space** \mathcal{Y} for each x in **input space** \mathcal{X} , and
- θ is a parameter in a [finite dimensional] parameter space Θ .
- This is the common starting point for a treatment of classical or Bayesian statistics.

- In this lecture, whenever we say "density", we could replace it with "mass function."
- Corresponding integrals would be replaced by summations.
- (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t. different base measures.)

The Data: Assumptions So Far in this Course

- Our usual setup is that (x, y) pairs are drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.
- How have we used this assumption so far?
 - ties validation performance to test performance
 - ties test performance to performance on new data when deployed
 - motivates empirical risk minimization
- The large majority of things we've learned about ridge/lasso/elastic-net regression, optimization, SVMs, and kernel methods are true for arbitrary training data sets D: (x₁, y₁),..., (x_n, y_n) ∈ X × 𝔅.
 - $\bullet\,$ i.e. $\,\mathcal{D}$ could be created by hand, by an adversary, or randomly.
- We rely on the i.i.d. $\mathcal{P}_{\mathfrak{X}\times \mathfrak{Y}}$ assumption when it comes to generalization.

The Data: Conditional Probability Modeling

- To get generalization, we'll still need our usual i.i.d. $\mathfrak{P}_{\mathfrak{X}\times \mathfrak{Y}}$ assumption.
- For developing the model, we'll make some assumptions about the training data...
 - In most of what we've done before, we had no assumptions on the training data.
- It's typical (and most general) to do everything "conditional on the x's"
 - That means, we assume the x's are known
 - In particular, we do not consider them random
 - We don't care how they were generated (randomly, adversarially, chosen by hand)
 - In other words, still no assumptions on x's.

The Data: Conditional Probability Modeling

- So we assume the x's are known.
- We observe y_i sampled randomly from $p(y | x_i, \theta)$, for some unknown $\theta \in \Theta$.
- We assume the outcomes y_1, \ldots, y_n are independent.
 - But not i.i.d. Why?
 - Each y_i may be drawn from a different distribution, depending on x_i .

Likelihood Function

- **Data:** $\mathcal{D} = (y_1, ..., y_n)$
- $\bullet\,$ The probability density for our data ${\mathcal D}$ is

$$p(\mathcal{D} | x_1, \ldots, x_n, \theta) = \prod_{i=1}^n p(y_i | x_i, \theta).$$

• For fixed \mathcal{D} , the function $\theta \mapsto p(\mathcal{D} \mid x, \theta)$ is the likelihood function:

$$L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid x, \theta),$$

where $x = (x_1, ..., x_n)$.

Maximum Likelihood Estimator

• The maximum likelihood estimator (MLE) for θ in the family $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} L_{\mathcal{D}}(\theta).$$

- MLE corresponds to ERM for the negative log- likelihood loss (discussed previously).
- The corresponding prediction function is

$$\hat{f}(x) = p(y \mid x, \hat{\theta}_{\mathsf{MLE}}).$$

• We can think of this as a choice of a particular function from the hypothesis space

$$\mathcal{F} = \{ p(y \mid x, \theta) : \theta \in \Theta \}.$$

Bayesian Conditional Probability Models

- Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$
- Two components to Bayesian conditional model:
 - A parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

• A prior distribution $p(\theta)$ on $\theta \in \Theta$.

The Posterior Distribution

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- The posterior distribution for θ is

$$p(\theta \mid \mathcal{D}, x) \propto p(\mathcal{D} \mid \theta, x) p(\theta)$$
$$= \underbrace{\mathcal{L}_{\mathcal{D}}(\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

- \bullet Posterior represents the rationally "updated" beliefs after seeing $\mathcal{D}.$
- Each $\boldsymbol{\theta}$ corresponds to a prediction function,
 - i.e. the conditional distribution function $p(y | x, \theta)$.

K

- Suppose for some reason we want point estimates of $\boldsymbol{\theta}.$
- We can use Bayesian decision theory to derive point estimates.
- As discussed last week, we may want to use
 - $\hat{\theta} = \mathbb{E}[\theta \mid \mathcal{D}, x]$ (the posterior mean estimate)
 - $\hat{\theta} = \text{median}[\theta \mid \mathcal{D}, x]$
 - $\hat{\theta} = \operatorname{arg\,max}_{\theta \in \Theta} p(\theta \mid \mathcal{D}, x)$ (the MAP estimate)
- depending on our loss function.

- Find a function takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y} ?
- Recall frequentist approach:
 - Choose family of conditional probability densities (hypothesis space).
 - Select one conditional probability from family, e.g. by MLE.
 - (MLE has nice properties, so a common choice. See advanced statistics class.)

- In Bayesian setting, there is no selection from hypothesis space.
- We chose a parametric family of conditional densities

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

- and a prior distribution $p(\theta)$ on this set.
- Suppose we get an x and we need to predict a distribution for the corresponding y.
- Having set our Bayesian model, there are no more decisions to make just computation...

The Prior Predictive Distribution

- Suppose we have not yet observed any data.
- In Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$x \mapsto p(y \mid x) = \int p(y \mid x; \theta) p(\theta) d\theta.$$

- This is an average of all conditional densities in our family, weighted by the prior.
- Such an average is also called a mixture distribution.

The Posterior Predictive Distribution

- Suppose we've already seen data $\ensuremath{\mathcal{D}}.$
- The posterior predictive distribution is given by

$$x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.$$

• This is an average of all conditional densities in our family, weighted by the posterior.

Comparison to Frequentist Approach

- $\bullet\,$ In Bayesian statistics we have two distributions on Θ :
 - the prior distribution $p(\theta)$
 - the posterior distribution $p(\theta \mid D)$.
- We also think of these as distributions on the hypothesis space

 $\{p(y \mid x, \theta) : \theta \in \Theta\}.$

 \bullet In frequentist approach, we choose $\hat{\theta}\in\Theta,$ and predict

 $p(y \mid x, \hat{\theta}(\mathcal{D})).$

• In Bayesian approach, we integrate out over Θ w.r.t. $p(\theta \mid D)$ and predict with

$$p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta$$

What if we don't want a full distribution on y?

- Once we have a predictive distribution p(y | x, D),
 - we can easily generate single point predictions.
- $x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.
- $x \mapsto \text{median}[y \mid x, \mathcal{D}]$, to minimize expected absolute error
- $x \mapsto \arg \max_{y \in \mathcal{Y}} p(y \mid x, \mathcal{D})$, to minimize expected 0/1 loss
- Each of these can be derived from p(y | x, D).

Gaussian Regression Example

Example in 1-Dimension: Setup

- Input space $\mathfrak{X} = [-1, 1]$ Output space $\mathfrak{Y} = \mathbf{R}$
- Given x, the world generates y as

$$y = w_0 + w_1 x + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

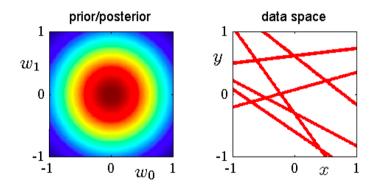
• Written another way, the conditional probability model is

$$y \mid x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2).$$

- What's the parameter space? \mathbf{R}^2 .
- Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

Example in 1-Dimension: Prior Situation

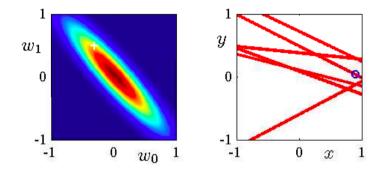
• Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}\left(0, \frac{1}{2}I\right)$ (Illustrated on left)



• On right, $y(x) = \mathbb{E}[y | x, w] = w_0 + w_1 x$, for randomly chosen $w \sim p(w) = \mathcal{N}(0, \frac{1}{2}I)$.

Bishop's PRML Fig 3.7

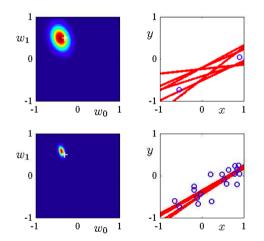
Example in 1-Dimension: 1 Observation



- On left: posterior distribution; white '+' indicates true parameters
- On right: blue circle indicates the training observation

Bishop's PRML Fig 3.7

Example in 1-Dimension: 2 and 20 Observations



Bishop's PRML Fig 3.7

David S. Rosenberg (New York University)

Gaussian Regression Continued

Closed Form for Posterior

• Model:

$$\begin{array}{ll} w & \sim & \mathcal{N}(0, \Sigma_0) \\ y_i \mid x, w & \text{i.i.d.} & \mathcal{N}(w^T x_i, \sigma^2) \end{array}$$

- Design matrix X Response column vector y
- Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• Posterior Variance Σ_P gives us a natural uncertainty measure.

DS-GA 1003 / CSCI-GA 2567

Closed Form for Posterior

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

$$\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y$$

• For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get

$$\hat{w} = \mu_P = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

which is of course the ridge regression solution.

David S. Rosenberg (New York University)

Posterior Mean and Posterior Mode (MAP)

- Let's find \hat{w}_{MAP} another way to elaborate on connection to ridge.
- Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

$$p(w \mid \mathcal{D}) \propto \underbrace{\exp\left(-\frac{\lambda}{2\sigma^2} \|w\|^2\right)}_{\text{prior}} \underbrace{\prod_{i=1}^{n} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)}_{\text{likelihood}}$$

• To find MAP, sufficient to minimize the negative log posterior:

$$\hat{w}_{MAP} = \underset{w \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \left[-\log p(w \mid \mathcal{D}) \right]$$
$$= \underset{w \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} (y_{i} - w^{T} x_{i})^{2}}_{\operatorname{log-prior}} + \underbrace{\lambda \|w\|^{2}}_{\operatorname{log-prior}}$$

• Which is the ridge regression objective.

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw$$
$$= \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw$$

• For Gaussian regression, predictive distribution has closed form.

Closed Form for Predictive Distribution

• Model:

$$\begin{aligned} w &\sim & \mathcal{N}(0, \Sigma_0) \\ y_i \mid x, w & \text{i.i.d.} & \mathcal{N}(w^T x_i, \sigma^2) \end{aligned}$$

• Predictive Distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw.$$

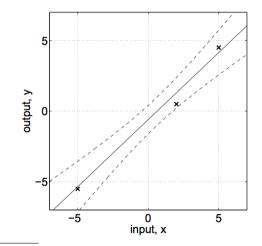
• Averages over prediction for each w, weighted by posterior distribution.

• Closed form:

DS-GA 1003 / CSCI-GA 2567

Predictive Distributions

• With predictive distributions, can give mean prediction with error bands:



Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)

DS-GA 1003 / CSCI-GA 2567