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Trees
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Tree Terminology

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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A Binary Decision Tree

binary tree: each node has either 2 children or 0 children

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Binary Decision Tree on R2

Consider a binary tree on {(X1,X2) | X1,X2 ∈ R}

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Types of Decision Trees

We’ll only consider
binary trees (vs multiway trees where nodes can have more than 2 children)
decisions at each node involve only a single feature (i.e. input coordinate)
for continuous variables, splits always of the form

xi 6 t

for discrete variables, partitions values into two groups
Other types of splitting rules

oblique decision trees or binary space partition trees (BSP trees) have a linear split at
each node
sphere trees – space is partitioned by a sphere of a certain radius around a fixed point
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Regression Trees
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Binary Regression Tree on R2

Consider a binary tree on {(X1,X2) | X1,X2 ∈ R}

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Fitting a Regression Tree

The decision tree gives the partition of X into regions:

{R1, . . . ,RM } .

Recall that a partition is a disjoint union, that is:

X= R1∪R2∪·· ·∪RM

and
Ri ∩Rj = ∅ ∀i 6= j
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Fitting a Regression Tree

Given the partition {R1, . . . ,RM }, final prediction is

f (x) =
M∑

m=1

cm1(x ∈ Rm)

How to choose c1, . . . ,cM?
For loss function `(ŷ ,y) = (ŷ − y)2, best is

ĉm = ave(yi | xi ∈ Rm).
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Trees and Overfitting

If we do enough splitting, every unique x value will be in its own partition.
This very likely overfits.

As usual, we need to control the complexity of our hypothesis space.

CART (Breiman et al. 1984) uses number of terminal nodes.
Tree depth is also common.
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Complexity of a Tree

Let |T |=M denote the number of terminal nodes in T .
We will use |T | to measure the complexity of a tree.
For any given complexity,

we want the tree minimizing square error on training set.

Finding the optimal binary tree of a given complexity is computationally intractable.
We proceed with a greedy algorithm

Means build the tree one node at a time, without any planning ahead.
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Root Node, Continuous Variables

Let x = (x1, . . . ,xd) ∈ Rd . (d features)
Splitting variable j ∈ {1, . . . ,d}.
Split point s ∈ R.
Partition based on j and s:

R1(j ,s) = {x | xj 6 s}

R2(j ,s) = {x | xj > s}
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Root Node, Continuous Variables

For each splitting variable j and split point s,

ĉ1(j ,s) = ave(yi | xi ∈ R1(j ,s))

ĉ2(j ,s) = ave(yi | xi ∈ R2(j ,s))

Find j ,s minimizing loss

L(j ,s) =
∑

i :xi∈R1(j ,s)

(yi − ĉ1(j ,s))
2+

∑
i :xi∈R2(j ,s)

(yi − ĉ2(j ,s))
2

How?
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Finding the Split Point

Consider splitting on the j ’th feature xj .
If xj(1), . . . ,xj(n) are the sorted values of the j ’th feature,

we only need to check split points between adjacent values
traditionally take split points halfway between adjacent values:

sj ∈
{
1
2
(
xj(r)+ xj(r+1)

)
| r = 1, . . . ,n−1

}
.

So only need to check performance of n−1 splits.
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Then Proceed Recursively

1 We have determined R1 and R2

2 Find best split for points in R1

3 Find best split for points in R2

4 Continue...

When do we stop?

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 3, 2018 17 / 51



Complexity Control Strategy

If the tree is too big, we may overfit.
If too small, we may miss patterns in the data (underfit).
Can limit max depth of tree.
Can require all leaf nodes contain a minimum number of points.
Can require a node have at least a certain number of data points to split.
Can do backward pruning – the approach of CART (Breiman et al 1984):

1 Build a really big tree (e.g. until all regions have 6 5 points).
2 “Prune” the tree back greedily all the way to the root, assessing performance on validation.
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Classification Trees
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Classification Trees

Consider classification case: Y= {1,2, . . . ,K }.
We need to modify

criteria for splitting nodes
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Classification Trees

Let node m represent region Rm, with Nm observations
Denote proportion of observations in Rm with class k by

p̂mk =
1
Nm

∑
{i :xi∈Rm}

1(yi = k).

Predicted classification for node m is

k(m) = argmax
k

p̂mk .

Predicted class probability distribution is (p̂m1, . . . , p̂mK ).
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Misclassification Error

Consider node m representing region Rm, with Nm observations
Suppose we predict

k(m) = argmax
k

p̂mk

as the class for all inputs in region Rm.
What is the misclassification rate on the training data?
It’s just

1− p̂mk(m).
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What loss function to use for node splitting?

Natural loss function for classification is 0/1 loss.
Is this tractable for finding the best split? Yes!
Should we use it? Maybe not!
If we’re only splitting once, then make sense to split using ultimate loss function (say 0/1).
But we can split nodes repeatedly – don’t have to get it right all at once.
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Splitting Example

Two class problem: 4 observations in each class.
Split 1: (3,1) and (1,3) [each region has 3 of one class and 1 of other]

Split 2: (2,4) and (2,0) [one region has 2 of one class and 4 of other, other region pure]

Misclassification rate for the two splits are same. (2).

In split 1, we’ll want to split each node again, and
we’ll end up with a leaf node with a single element.node .

In split 2, we’re already done with the node (2,0).
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Splitting Criteria

Eventually we want pure leaf nodes (i.e. as close to a single class as possible).

We’ll find splitting variables and split point minimizing some node impurity measure.
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Two-Class Node Impurity Measures

Consider binary classification
Let p be the relative frequency of class 1.
Here are three node impurity measures as a function of p

HTF Figure 9.3
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Classification Trees: Node Impurity Measures

Consider leaf node m representing region Rm, with Nm observations
Three measures Qm(T ) of node impurity for leaf node m:

Misclassification error:
1− p̂mk(m).

Gini index:
K∑

k=1

p̂mk(1− p̂mk)

Entropy or deviance (equivalent to using information gain):

−

K∑
k=1

p̂mk log p̂mk .
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Class Distributions: Pre-split

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Class Distributions: Split Search

(Maximizing information gain is equivalent to minimizing entropy.)

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Splitting nodes: How exactly do we do this?

Let RL and RR be regions corresponding to a potential node split.
Suppose we have NL points in RL and NR points in RR .
Let Q(RL) and Q(RR) be the node impurity measures.
Then find split that minimizes the weighted average of node impurities:

NLQ(RL)+NRQ(RR)
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Classification Trees: Node Impurity Measures

For building the tree, Gini and Entropy seem to be more effective.
They push for more pure nodes, not just misclassification rate
A good split may not change misclassification rate at all!

Two class problem: 4 observations in each class.
Split 1: (3,1) and (1,3) [each region has 3 of one class and 1 of other]
Split 2: (2,4) and (2,0) [one region has 2 of one class and 4 of other, other region pure]
Misclassification rate for two splits are same.
Gini and entropy split prefer Split 2.
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Trees in General
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Missing Features

What to do about missing features?

Throw out inputs with missing features
Impute missing values with feature means
If a categorical feature, let “missing” be a new category.

For trees we can do something else...
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Surrogate Splits for Missing Data

For any non-terminal node that splits using feature f ,
we can find a surrogate split using each of the other features.

To make a surrogate using f ′, we find the split using f ′ that best approximates the split
using f .

Define “best” in term of 0/1 loss on the examples for which neither f nor f ′ is missing.

If there are d features, we’ll have d −1 surrogate splits to approximate the split on f .
We can rank these splits by how well they approximate the original split.
We repeat the above process for every non-terminal node.

So each node has the primary split and d −1 surrogate splits, where d is the number of
features.

If we’re predicting on an example and the feature needed to evaluate a split is missing,
simply go down the list of surrogate splits until we get to one for which the feature is not
missing.

I found the CART book a bit vague on this, so this is my best guess for what is intended. If somebody finds a clear statement, please let me
know.
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Categorical Features

Suppose we have a categorical feature with q possible values (unordered).
We want to find the best split into 2 groups
There are 2q−1−1 distinct splits.
Is this tractable? Maybe not in general. But...
For binary classification Y= {0,1}, there is an efficient algorithm.
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Categorical Features in Binary Classification

Assign each category a number
the proportion of class 0 among training examples with that category.

Then find optimal split as though it were a numeric feature.
For binary classification, this is equivalent to searching over all splits

at least for certain for node impurity measures of a certain class, including square error, gini
and entropy.

(This trick doesn’t work for multiclass – would have to use approximations...)
Statistical issues with categorical features?

If a category has a very large number of categories, we can overfit.
Extreme example: Row Number could lead to perfect classification with a single split.
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Trees vs Linear Models

Trees have to work much harder to capture linear relations.
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Interpretability

Trees are certainly easy to explain.
You can show a tree on a slide.
Small trees seem interpretable.
For large trees, maybe not so easy.
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Trees for Nonlinear Feature Discovery

Suppose tree T gives partition R1, . . . ,Rm.
Predictions are

f (x) =
M∑

m=1

cm1(x ∈ Rm)

Each region Rm can be viewed as giving a feature function x 7→ 1(x ∈ Rm).
Can use these nonlinear features in e.g. lasso regression.
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Comments about Trees

Trees make no use of geometry
No inner products or distances
called a “nonmetric” method
Feature scale irrelevant

Prediction functions are not continuous
not so bad for classification
may not be desirable for regression
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Appendix: Tree Pruning
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Stopping Conditions for Building the Big Tree

First step is to build the “big tree”.
Keep splitting nodes until every node either has

Zero error OR
Node has C or fewer examples (typically C = 5 or C = 1) OR
All inputs in node are identical (and thus we cannot split more)
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Pruning the Tree

Consider an internal node n.
To prune the subtree rooted at n

eliminate all descendants of n
n becomes a terminal node

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 3, 2018 43 / 51



Tree Pruning

Full Tree T0

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Tree Pruning

Subtree T ⊂ T0

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Empirical Risk and Tree Complexity

Suppose we want to prune a big tree T0.

Let R̂(T ) be the empirical risk of T (i.e. square error on training)

Clearly, for any subtree T ⊂ T0, R̂(T )> R̂(T0).

Let |T | be the number of terminal nodes in T .
|T | is our measure of complexity for a tree.
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Cost Complexity (or Weakest Link) Pruning

Definitions
The cost complexity criterion with parameter α is

Cα(T ) = R̂(T )+α |T |

Trades off between empirical risk and complexity of tree.

Cost complexity pruning:
For each α, find the subtree T ⊂ T0 minimizing Cα(T ) (on training data).
Use cross validation to find the right choice of α.
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Do we need to search over all subtrees?

The cost complexity criterion with parameter α is

Cα(T ) = R̂(T )+α |T |

Cα(T ) has familiar regularized ERM form, but
Cannot just differentiate w.r.t. parameters of a tree T .

To minimize Cα(T ) over subtrees T ⊂ T0,
seems like we need to evaluate exponentially many1 subtrees T ⊂ T0.
(In particular, we can include or exclude any subset of internal nodes that are parents of leaf
nodes.)

Amazingly, we only need to try NInt, where NInt is the number of internal nodes of T0.

1See On subtrees of trees.
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Cost Complexity Greedy Pruning Algorithm

Find a proper2 subtree T1 ⊂ T0 that minimizes R̂(T1)− R̂(T0).
Can get T1 by removing a single pair of leaf nodes, and their internal node parent becomes a
leaf node.
This T1 will have 1 fewer internal node than T0. (And 1 fewer leaf node.)

Then find proper subtree T2 ⊂ T1 that minimizes minimizes R̂(T2)− R̂(T1).
Repeat until we have removed all internal nodes are left with just a single node (a leaf
node).
If NInt is the number of internal nodes of T0, then we end up with a nested sequence of
trees:

T =
{
T0 ⊃ T1 ⊃ T2 ⊃ ·· · ⊃ T|NInt|

}

2T1 is a proper subtree of T0 if tree T1 ⊂ T0 and T1 6= T0.
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Greedy Pruning is Sufficient

Cost complexity pruning algorithm gives us a set of nested trees:

T =
{
T0 ⊃ T1 ⊃ T2 ⊃ ·· · ⊃ T|NInt|

}
Breiman et al. (1984) proved that this is all you need. That is:{

argmin
T⊂T0

Cα(T ) | α> 0

}
⊂ T

Only need to evaluate NInt trees.
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Regularization Path for Trees on SPAM dataset (HTF Figure 9.4)

For each α, we find optimal tree Tα on training set. Corresponding tree size |Tα| is shown on
bottom. Blue curves gives error rate estimates from cross-validation (tree-size in each fold may
be different from |Tα|). Orange curve is test error.
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