# Classification and Regression Trees 

David S. Rosenberg<br>New York University

April 3, 2018

## Contents

(1) Trees
(2) Regression Trees
(3) Classification Trees
(4) Trees in General

## Trees

## Tree Terminology

A general tree structure


From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

## A Binary Decision Tree

binary tree: each node has either 2 children or 0 children



From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

## Binary Decision Tree on $\mathbf{R}^{2}$

- Consider a binary tree on $\left\{\left(X_{1}, X_{2}\right) \mid X_{1}, X_{2} \in \mathbf{R}\right\}$


From An Introduction to Statistical Learning, with applications in $R$ (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

## Types of Decision Trees

- We'll only consider
- binary trees (vs multiway trees where nodes can have more than 2 children)
- decisions at each node involve only a single feature (i.e. input coordinate)
- for continuous variables, splits always of the form

$$
x_{i} \leqslant t
$$

- for discrete variables, partitions values into two groups
- Other types of splitting rules
- oblique decision trees or binary space partition trees (BSP trees) have a linear split at each node
- sphere trees - space is partitioned by a sphere of a certain radius around a fixed point


## Regression Trees

## Binary Regression Tree on $\mathbf{R}^{2}$

- Consider a binary tree on $\left\{\left(X_{1}, X_{2}\right) \mid X_{1}, X_{2} \in \mathbf{R}\right\}$


From An Introduction to Statistical Learning, with applications in $R$ (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

## Fitting a Regression Tree

- The decision tree gives the partition of $X$ into regions:

$$
\left\{R_{1}, \ldots, R_{M}\right\}
$$

- Recall that a partition is a disjoint union, that is:

$$
X=R_{1} \cup R_{2} \cup \cdots \cup R_{M}
$$

and

$$
R_{i} \cap R_{j}=\emptyset \quad \forall i \neq j
$$

## Fitting a Regression Tree

- Given the partition $\left\{R_{1}, \ldots, R_{M}\right\}$, final prediction is

$$
f(x)=\sum_{m=1}^{M} c_{m} 1\left(x \in R_{m}\right)
$$

- How to choose $c_{1}, \ldots, c_{M}$ ?
- For loss function $\ell(\hat{y}, y)=(\hat{y}-y)^{2}$, best is

$$
\hat{c}_{m}=\operatorname{ave}\left(y_{i} \mid x_{i} \in R_{m}\right)
$$

## Trees and Overfitting

- If we do enough splitting, every unique $x$ value will be in its own partition.
- This very likely overfits.
- As usual, we need to control the complexity of our hypothesis space.
- CART (Breiman et al. 1984) uses number of terminal nodes.
- Tree depth is also common.


## Complexity of a Tree

- Let $|T|=M$ denote the number of terminal nodes in $T$.
- We will use $|T|$ to measure the complexity of a tree.
- For any given complexity,
- we want the tree minimizing square error on training set.
- Finding the optimal binary tree of a given complexity is computationally intractable.
- We proceed with a greedy algorithm
- Means build the tree one node at a time, without any planning ahead.


## Root Node, Continuous Variables

- Let $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{R}^{d}$. (d features)
- Splitting variable $j \in\{1, \ldots, d\}$.
- Split point $s \in \mathbf{R}$.
- Partition based on $j$ and $s$ :

$$
\begin{aligned}
& R_{1}(j, s)=\left\{x \mid x_{j} \leqslant s\right\} \\
& R_{2}(j, s)=\left\{x \mid x_{j}>s\right\}
\end{aligned}
$$

## Root Node, Continuous Variables

- For each splitting variable $j$ and split point $s$,

$$
\begin{aligned}
& \hat{c}_{1}(j, s)=\operatorname{ave}\left(y_{i} \mid x_{i} \in R_{1}(j, s)\right) \\
& \hat{c}_{2}(j, s)=\operatorname{ave}\left(y_{i} \mid x_{i} \in R_{2}(j, s)\right)
\end{aligned}
$$

- Find $j, s$ minimizing loss

$$
L(j, s)=\sum_{i: x_{i} \in R_{1}(j, s)}\left(y_{i}-\hat{c}_{1}(j, s)\right)^{2}+\sum_{i: x_{i} \in R_{2}(j, s)}\left(y_{i}-\hat{c}_{2}(j, s)\right)^{2}
$$

- How?


## Finding the Split Point

- Consider splitting on the $j$ 'th feature $x_{j}$.
- If $x_{j(1)}, \ldots, x_{j(n)}$ are the sorted values of the $j$ 'th feature,
- we only need to check split points between adjacent values
- traditionally take split points halfway between adjacent values:

$$
s_{j} \in\left\{\left.\frac{1}{2}\left(x_{j(r)}+x_{j(r+1)}\right) \right\rvert\, r=1, \ldots, n-1\right\} .
$$

- So only need to check performance of $n-1$ splits.


## Then Proceed Recursively

(1) We have determined $R_{1}$ and $R_{2}$
(2) Find best split for points in $R_{1}$
(3) Find best split for points in $R_{2}$

- Continue...
- When do we stop?


## Complexity Control Strategy

- If the tree is too big, we may overfit.
- If too small, we may miss patterns in the data (underfit).
- Can limit max depth of tree.
- Can require all leaf nodes contain a minimum number of points.
- Can require a node have at least a certain number of data points to split.
- Can do backward pruning - the approach of CART (Breiman et al 1984):
(1) Build a really big tree (e.g. until all regions have $\leqslant 5$ points).
(2) "Prune" the tree back greedily all the way to the root, assessing performance on validation.


## Classification Trees

## Classification Trees

- Consider classification case: $y=\{1,2, \ldots, K\}$.
- We need to modify
- criteria for splitting nodes


## Classification Trees

- Let node $m$ represent region $R_{m}$, with $N_{m}$ observations
- Denote proportion of observations in $R_{m}$ with class $k$ by

$$
\hat{p}_{m k}=\frac{1}{N_{m}} \sum_{\left\{i: x_{i} \in R_{m}\right\}} 1\left(y_{i}=k\right) .
$$

- Predicted classification for node $m$ is

$$
k(m)=\underset{k}{\arg \max } \hat{p}_{m k} .
$$

- Predicted class probability distribution is $\left(\hat{p}_{m 1}, \ldots, \hat{p}_{m K}\right)$.


## Misclassification Error

- Consider node $m$ representing region $R_{m}$, with $N_{m}$ observations
- Suppose we predict

$$
k(m)=\underset{k}{\arg \max } \hat{p}_{m k}
$$

as the class for all inputs in region $R_{m}$.

- What is the misclassification rate on the training data?
- It's just

$$
1-\hat{p}_{m k(m)} .
$$

## What loss function to use for node splitting?

- Natural loss function for classification is $0 / 1$ loss.
- Is this tractable for finding the best split? Yes!
- Should we use it? Maybe not!
- If we're only splitting once, then make sense to split using ultimate loss function (say $0 / 1$ ).
- But we can split nodes repeatedly - don't have to get it right all at once.


## Splitting Example

- Two class problem: 4 observations in each class.
- Split 1: $(3,1)$ and $(1,3)$ [each region has 3 of one class and 1 of other]
- Split 2: $(2,4)$ and $(2,0)$ [one region has 2 of one class and 4 of other, other region pure]
- Misclassification rate for the two splits are same. (2).
- In split 1, we'll want to split each node again, and
- we'll end up with a leaf node with a single element.node .
- In split 2 , we're already done with the node $(2,0)$.


## Splitting Criteria

- Eventually we want pure leaf nodes (i.e. as close to a single class as possible).
- We'll find splitting variables and split point minimizing some node impurity measure.


## Two-Class Node Impurity Measures

- Consider binary classification
- Let $p$ be the relative frequency of class 1 .
- Here are three node impurity measures as a function of $p$



## Classification Trees: Node Impurity Measures

- Consider leaf node $m$ representing region $R_{m}$, with $N_{m}$ observations
- Three measures $Q_{m}(T)$ of node impurity for leaf node $m$ :
- Misclassification error:

$$
1-\hat{p}_{m k(m)} .
$$

- Gini index:

$$
\sum_{k=1}^{K} \hat{p}_{m k}\left(1-\hat{p}_{m k}\right)
$$

- Entropy or deviance (equivalent to using information gain):

$$
-\sum_{k=1}^{K} \hat{p}_{m k} \log \hat{p}_{m k}
$$

## Class Distributions: Pre-split


class distribution


## Class Distributions: Split Search



From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

## Splitting nodes: How exactly do we do this?

- Let $R_{L}$ and $R_{R}$ be regions corresponding to a potential node split.
- Suppose we have $N_{L}$ points in $R_{L}$ and $N_{R}$ points in $R_{R}$.
- Let $Q\left(R_{L}\right)$ and $Q\left(R_{R}\right)$ be the node impurity measures.
- Then find split that minimizes the weighted average of node impurities:

$$
N_{L} Q\left(R_{L}\right)+N_{R} Q\left(R_{R}\right)
$$

## Classification Trees: Node Impurity Measures

- For building the tree, Gini and Entropy seem to be more effective.
- They push for more pure nodes, not just misclassification rate
- A good split may not change misclassification rate at all!
- Two class problem: 4 observations in each class.
- Split 1: $(3,1)$ and $(1,3)$ [each region has 3 of one class and 1 of other]
- Split 2: $(2,4)$ and $(2,0)$ [one region has 2 of one class and 4 of other, other region pure]
- Misclassification rate for two splits are same.
- Gini and entropy split prefer Split 2.


## Trees in General

## Missing Features

- What to do about missing features?
- Throw out inputs with missing features
- Impute missing values with feature means
- If a categorical feature, let "missing" be a new category.
- For trees we can do something else...


## Surrogate Splits for Missing Data

- For any non-terminal node that splits using feature $f$,
- we can find a surrogate split using each of the other features.
- To make a surrogate using $f^{\prime}$, we find the split using $f^{\prime}$ that best approximates the split using $f$.
- Define "best" in term of $0 / 1$ loss on the examples for which neither $f$ nor $f^{\prime}$ is missing.
- If there are $d$ features, we'll have $d-1$ surrogate splits to approximate the split on $f$.
- We can rank these splits by how well they approximate the original split.
- We repeat the above process for every non-terminal node.
- So each node has the primary split and $d-1$ surrogate splits, where $d$ is the number of features.
- If we're predicting on an example and the feature needed to evaluate a split is missing,
- simply go down the list of surrogate splits until we get to one for which the feature is not missing.

I found the CART book a bit vague on this, so this is my best guess for what is intended. If somebody finds a clear statement, please let me know.

## Categorical Features

- Suppose we have a categorical feature with $q$ possible values (unordered).
- We want to find the best split into 2 groups
- There are $2^{q-1}-1$ distinct splits.
- Is this tractable? Maybe not in general. But...
- For binary classification $y=\{0,1\}$, there is an efficient algorithm.


## Categorical Features in Binary Classification

- Assign each category a number
- the proportion of class 0 among training examples with that category.
- Then find optimal split as though it were a numeric feature.
- For binary classification, this is equivalent to searching over all splits
- at least for certain for node impurity measures of a certain class, including square error, gini and entropy.
- (This trick doesn't work for multiclass - would have to use approximations...)
- Statistical issues with categorical features?
- If a category has a very large number of categories, we can overfit.
- Extreme example: Row Number could lead to perfect classification with a single split.


## Trees vs Linear Models

- Trees have to work much harder to capture linear relations.


From An Introduction to Statistical Learning, with applications in $R$ (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

## Interpretability

- Trees are certainly easy to explain.
- You can show a tree on a slide.
- Small trees seem interpretable.
- For large trees, maybe not so easy.


## Trees for Nonlinear Feature Discovery

- Suppose tree $T$ gives partition $R_{1}, \ldots, R_{m}$.
- Predictions are

$$
f(x)=\sum_{m=1}^{M} c_{m} 1\left(x \in R_{m}\right)
$$

- Each region $R_{m}$ can be viewed as giving a feature function $x \mapsto 1\left(x \in R_{m}\right)$.
- Can use these nonlinear features in e.g. lasso regression.


## Comments about Trees

- Trees make no use of geometry
- No inner products or distances
- called a "nonmetric" method
- Feature scale irrelevant
- Prediction functions are not continuous
- not so bad for classification
- may not be desirable for regression


## Appendix: Tree Pruning

## Stopping Conditions for Building the Big Tree

- First step is to build the "big tree".
- Keep splitting nodes until every node either has
- Zero error OR
- Node has $C$ or fewer examples (typically $C=5$ or $C=1$ ) OR
- All inputs in node are identical (and thus we cannot split more)


## Pruning the Tree

- Consider an internal node $n$.
- To prune the subtree rooted at $n$
- eliminate all descendants of $n$
- $n$ becomes a terminal node


## Tree Pruning

- Full Tree $T_{0}$


From An Introduction to Statistical Learning, with applications in $R$ (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

## Tree Pruning

- Subtree $T \subset T_{0}$


From An Introduction to Statistical Learning, with applications in $R$ (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

## Empirical Risk and Tree Complexity

- Suppose we want to prune a big tree $T_{0}$.
- Let $\hat{R}(T)$ be the empirical risk of $T$ (i.e. square error on training)
- Clearly, for any subtree $T \subset T_{0}, \hat{R}(T) \geqslant \hat{R}\left(T_{0}\right)$.
- Let $|T|$ be the number of terminal nodes in $T$.
- $|T|$ is our measure of complexity for a tree.


## Cost Complexity (or Weakest Link) Pruning

## Definitions

The cost complexity criterion with parameter $\alpha$ is

$$
C_{\alpha}(T)=\hat{R}(T)+\alpha|T|
$$

- Trades off between empirical risk and complexity of tree.
- Cost complexity pruning:
- For each $\alpha$, find the subtree $T \subset T_{0}$ minimizing $C_{\alpha}(T)$ (on training data).
- Use cross validation to find the right choice of $\alpha$.


## Do we need to search over all subtrees?

- The cost complexity criterion with parameter $\alpha$ is

$$
C_{\alpha}(T)=\hat{R}(T)+\alpha|T|
$$

- $C_{\alpha}(T)$ has familiar regularized ERM form, but
- Cannot just differentiate w.r.t. parameters of a tree $T$.
- To minimize $C_{\alpha}(T)$ over subtrees $T \subset T_{0}$,
- seems like we need to evaluate exponentially many ${ }^{1}$ subtrees $T \subset T_{0}$.
- (In particular, we can include or exclude any subset of internal nodes that are parents of leaf nodes.)
- Amazingly, we only need to try $N_{\text {Int }}$, where $N_{\text {Int }}$ is the number of internal nodes of $T_{0}$.

[^0]
## Cost Complexity Greedy Pruning Algorithm

- Find a proper ${ }^{2}$ subtree $T_{1} \subset T_{0}$ that minimizes $\hat{R}\left(T_{1}\right)-\hat{R}\left(T_{0}\right)$.
- Can get $T_{1}$ by removing a single pair of leaf nodes, and their internal node parent becomes a leaf node.
- This $T_{1}$ will have 1 fewer internal node than $T_{0}$. (And 1 fewer leaf node.)
- Then find proper subtree $T_{2} \subset T_{1}$ that minimizes minimizes $\hat{R}\left(T_{2}\right)-\hat{R}\left(T_{1}\right)$.
- Repeat until we have removed all internal nodes are left with just a single node (a leaf node).
- If $N_{\text {Int }}$ is the number of internal nodes of $T_{0}$, then we end up with a nested sequence of trees:

$$
\mathcal{T}=\left\{T_{0} \supset T_{1} \supset T_{2} \supset \cdots \supset T_{\left|N_{\mid n t}\right|}\right\}
$$

[^1]
## Greedy Pruning is Sufficient

- Cost complexity pruning algorithm gives us a set of nested trees:

$$
\mathcal{T}=\left\{T_{0} \supset T_{1} \supset T_{2} \supset \cdots \supset T_{\left|N_{\text {nta }}\right|}\right\}
$$

- Breiman et al. (1984) proved that this is all you need. That is:

$$
\left\{\underset{T \subset T_{0}}{\arg \min } C_{\alpha}(T) \mid \alpha \geqslant 0\right\} \subset \mathcal{T}
$$

- Only need to evaluate $N_{\text {lnt }}$ trees.


## Regularization Path for Trees on SPAM dataset (HTF Figure 9.4)

$\alpha$


For each $\alpha$, we find optimal tree $T_{\alpha}$ on training set. Corresponding tree size $\left|T_{\alpha}\right|$ is shown on bottom. Blue curves gives error rate estimates from cross-validation (tree-size in each fold may be different from $\left.\left|T_{\alpha}\right|\right)$. Orange curve is test error.


[^0]:    ${ }^{1}$ See On subtrees of trees.

[^1]:    ${ }^{2} T_{1}$ is a proper subtree of $T_{0}$ if tree $T_{1} \subset T_{0}$ and $T_{1} \neq T_{0}$.

