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Ensemble Methods: Introduction
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Ensembles: Parallel vs Sequential

Ensemble methods combine multiple models
Parallel ensembles: each model is built independently

e.g. bagging and random forests
Main Idea: Combine many (high complexity, low bias) models to reduce variance

Sequential ensembles:
Models are generated sequentially
Try to add new models that do well where previous models lack
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The Benefits of Averaging
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A Poor Estimator

Let Z ,Z1, . . . ,Zn i.i.d. EZ = µ and VarZ = σ2.
We could use any single Zi to estimate µ.
Performance?
Unbiased: EZi = µ.
Standard error of estimator would be σ.

The standard error is the standard deviation of the sampling distribution of a statistic.
SD(Z ) =

√
Var(Z ) =

√
σ2 = σ.
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Variance of a Mean

Let Z ,Z1, . . . ,Zn i.i.d. EZ = µ and VarZ = σ2.
Let’s consider the average of the Zi ’s.

Average has the same expected value but smaller standard error:

E

[
1
n

n∑
i=1

Zi

]
= µ Var

[
1
n

n∑
i=1

Zi

]
=
σ2

n
.

Clearly the average is preferred to a single Zi as estimator.
Can we apply this to reduce variance of general prediction functions?
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Averaging Independent Prediction Functions

Suppose we have B independent training sets from the same distribution.
Learning algorithm gives B decision functions: f̂1(x), f̂2(x), . . . , f̂B(x)
Define the average prediction function as:

f̂avg =
1
B

B∑
b=1

f̂b

What’s random here?
The B independent training sets are random, which gives rise to variation among the f̂b’s.
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Averaging Independent Prediction Functions

Fix some particular x0 ∈ X.
Then average prediction on x0 is

f̂avg(x0) =
1
B

B∑
b=1

f̂b(x0).

Consider f̂avg(x0) and f̂1(x0), . . . , f̂B(x0) as random variables
Since the training sets were random

We have no idea about the distributions of f̂1(x0), . . . , f̂B(x0) – they could be crazy...
But we do know that f̂1(x0), . . . , f̂B(x0) are i.i.d. And that’s all we need here...
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Averaging Independent Prediction Functions

The average prediction on x0 is

f̂avg(x0) =
1
B

B∑
b=1

f̂b(x0).

f̂avg(x0) and f̂b(x0) have the same expected value, but
f̂avg(x0) has smaller variance:

Var(f̂avg(x0)) =
1
B2 Var

(
B∑

b=1

f̂b(x0)

)

=
1
B

Var
(
f̂1(x0)

)
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Averaging Independent Prediction Functions

Using

f̂avg =
1
B

B∑
b=1

f̂b

seems like a win.
But in practice we don’t have B independent training sets...
Instead, we can use the bootstrap....
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Review: Bootstrap

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 12 / 29



The Bootstrap Sample

Definition
A bootstrap sample from Dn is a sample of size n drawn with replacement from Dn.

In a bootstrap sample, some elements of Dn

will show up multiple times,
some won’t show up at all.

Each Xi has a probability (1−1/n)n of not being selected.
Recall from analysis that for large n,(

1−
1
n

)n

≈ 1
e
≈ .368.

So we expect ~63.2% of elements of D will show up at least once.
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The Bootstrap Method

Definition
A bootstrap method is when you simulate having B independent samples from P by taking B
bootstrap samples from the sample Dn.

Given original data Dn, compute B bootstrap samples D1
n , . . . ,D

B
n .

For each bootstrap sample, compute some function

φ(D1
n), . . . ,φ(D

B
n )

Work with these values as though D1
n , . . . ,D

B
n were i.i.d. P .

Amazing fact: Things often come out very close to what we’d get with independent
samples from P .
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Bagging
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Bagging

Draw B bootstrap samples D1, . . . ,DB from original data D.
Let f̂1, f̂2, . . . , f̂B be the prediction functions for each set.
The bagged prediction function is a combination of these:

f̂avg(x) = Combine
(
f̂1(x), f̂2(x), . . . , f̂B(x)

)
How might we combine

prediction functions for regression?
binary class predictions?
binary probability predictions?
multiclass predictions?

Bagging proposed by Leo Breiman (1996).
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Bagging for Regression

Draw B bootstrap samples D1, . . . ,DB from original data D.
Let f̂1, f̂2, . . . , f̂B : X→ R be the predictions functions for each set.
Bagged prediction function is given as

f̂bag(x) =
1
B

B∑
b=1

f̂b(x).

Empirically, f̂bag often performs similarly to what we’d get from training on B independent
samples:

f̂bag(x) has same expectation as f̂1(x), but

f̂bag(x) has smaller variance than f̂1(x)
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Out-of-Bag Error Estimation

Each bagged predictor is trained on about 63% of the data.
Remaining 37% are called out-of-bag (OOB) observations.
For ith training point, let

Si =
{
b | Db does not contain ith point

}
.

The OOB prediction on xi is

f̂OOB(xi ) =
1
|Si |

∑
b∈Si

f̂b(xi ).

The OOB error is a good estimate of the test error.
OOB error is similar to cross validation error – both are computed on training set.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 18 / 29



Bagging Classification Trees

Input space X= R5 and output space Y= {−1,1}.

Sample size n = 30

Each bootstrap tree is quite
different

Different splitting variable at the
root

This high degree of variability from
small perturbations of the training
data is why tree methods are
described as high variance.

From HTF Figure 8.9
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Comparing Classification Combination Methods

Two ways to combine classifications: consensus class or average probabilities.

From HTF Figure 8.10
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Terms “Bias” and “Variance” in Casual Usage
(Warning! Confusion Zone!)

Restricting the hypothesis space F “biases” the fit

away from the best possible fit of the training data, and
towards a [usually] simpler model.

Full, unpruned decision trees have very little bias.
Pruning decision trees introduces a bias.
Variance describes how much the fit changes across different random training sets.
If different random training sets give very similar fits, then algorithm has high stability.
Decision trees are found to be high variance (i.e. not very stable).
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Conventional Wisdom on When Bagging Helps

Hope is that bagging reduces variance without making bias worse.
General sentiment is that bagging helps most when

Relatively unbiased base prediction functions
High variance / low stability

i.e. small changes in training set can cause large changes in predictions

Hard to find clear and convincing theoretical results on this
But following this intuition leads to improved ML methods, e.g. Random Forests
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Random Forests
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Recall the Motivating Principal of Bagging

Averaging f̂1, . . . , f̂B reduces variance, if they’re based on i.i.d. samples from PX×Y
Bootstrap samples are

independent samples from the training set, but
are not independent samples from PX×Y.

This dependence limits the amount of variance reduction we can get.
Would be nice to reduce the dependence between f̂i ’s...
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Random Forest

Main idea of random forests

Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence
between trees.

Key step in random forests:
When constructing each tree node, restrict choice of splitting variable to a randomly chosen
subset of features of size m.

Typically choose m ≈√p, where p is the number of features.
Can choose m using cross validation.
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Random Forest

Usual approach is to build very deep trees (low bias)
Diversity in individual tree prediction functions from

bootstrap samples (somewhat different training data) and
randomized tree building

Bagging seems to work better when we are combining a diverse set of prediction functions.
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Random Forest: Effect of m size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Appendix
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Variance of a Mean of Correlated Variables

For Z ,Z1, . . . ,Zn i.i.d. with EZ = µ and VarZ = σ2,

E

[
1
n

n∑
i=1

Zi

]
= µ Var

[
1
n

n∑
i=1

Zi

]
=
σ2

n
.

What if Z ’s are correlated?
Suppose ∀i 6= j , Corr(Zi ,Zj) = ρ . Then

Var

[
1
n

n∑
i=1

Zi

]
= ρσ2+

1−ρ
n
σ2.

For large n, the ρσ2 term dominates – limits benefit of averaging.
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