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Introduction

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 3 / 58



Nonlinear Regression

Suppose we have the following regression problem:

What are some options?
basis functions, kernel methods, trees, neural nets, ...

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 4 / 58



Linear Model with Basis Functions

Choose some basis functions on input space X:

g1, . . . ,gM : X→ R

Predict with linear combination of basis functions:

f (x) =
M∑

m=1

νmgm(x)

Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)

In ML parlance, basis functions are called features or feature functions.
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Not Limited to Regression

Linear combination of basis functions:

f (x) =
M∑

m=1

νmgm(x)

f (x) is a number — for regression, it’s exactly what we’re looking for.
Otherwise, f (x) is often called a score function.
It can be

thresholded to get a classification
transformed to get a probability
transformed to get a parameter of a probability distribution (e.g. Poisson regression)
used for ranking search results
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Adaptive Basis Function Model

Let’s “learn” the basis functions.
Base hypothesis space H consisting of functions h : X→ R.

We will choose our “basis functions” or “features” from this set of functions.

An adaptive basis function expansion over H is

f (x) =
M∑

m=1

νmhm(x),

where vm ∈ R and hm ∈H are chosen based on training data.
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Adaptive Basis Function Model

Base hypothesis space: H of real-valued functions
Combined hypothesis space: FM :

FM =

{
M∑

m=1

vmhm(x) | vm ∈ R, hm ∈H, m = 1, . . . ,M

}

Suppose we’re given some data D= ((x1,y1), . . . ,(xn,yn)).
Learning is choosing v1, . . . ,vM ∈ R and h1, . . . ,hM ∈H to fit D.
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Empirical Risk Minimization

We’ll consider learning by empirical risk minimization:

f̂ = argmin
f∈FM

1
n

n∑
i=1

`(yi , f (xi )) ,

for some loss function `(y , ŷ).
Write ERM objective function as

J(v1, . . . ,vM ,h1, . . . ,hM) =
1
n

n∑
i=1

`

(
yi ,

M∑
m=1

vmhm(x)

)
.

How to optimize J? i.e. how to learn?

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 9 / 58



Gradient-Based Methods

Suppose our base hypothesis space is parameterized by Θ= Rb:

J(v1, . . . ,vM ,θ1, . . . ,θM) =
1
n

n∑
i=1

`

(
yi ,

M∑
m=1

vmh(x ;θm)

)
.

Can we can differentiate J w.r.t. vm’s and θm’s? Optimize with SGD?
For some hypothesis spaces and typical loss functions, yes!
Neural networks fall into this category! (h1, . . . ,hM are neurons of last hidden layer.)
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What if Gradient Based Methods Don’t Apply?

What if base hypothesis space H consists of decision trees?
Can we even parameterize trees with Θ= Rb?
Even if we could for some set of trees,

predictions would not change continuously w.r.t. θ ∈Θ,
and so certainly not differentiable.

Today we’ll discuss gradient boosting. It applies whenever
our loss function is [sub]differentiable w.r.t. training predictions f (xi ), and
we can do regression with the base hypothesis space H (e.g. regression trees).
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Overview

Forward stagewise additive modeling (FSAM)
example: L2 Boosting
example: exponential loss gives AdaBoost
Not clear how to do it with many other losses, including logistic loss

Gradient Boosting
example: logistic loss gives BinomialBoost

Variations on Gradient Boosting
step size selection
stochastic row/column selection
Newton step direction
XGBoost
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Forward Stagewise Additive Modeling
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Forward Stagewise Additive Modeling (FSAM)

FSAM is an iterative optimization algorithm for fitting adaptive basis function models.
Start with f0 ≡ 0.
After m−1 stages, we have

fm−1 =

m−1∑
i=1

νihi .

In m’th round, we want to find
step direction hm ∈H (i.e. a basis function) and
step size νi > 0

such that
fm = fm−1+νihm

improves objective function value by as much as possible.
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Forward Stagewise Additive Modeling for ERM

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(νm,hm) = argmin
ν∈R,h∈H

1
n

n∑
i=1

`

yi , fm−1(xi )+νh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm = fm−1+νmh.

3 Return: fM .
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Example: L2 Boosting
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Example: L2 Boosting

Suppose we use the square loss. Then in each step we minimize

J(v ,h) =
1
n

n∑
i=1

yi −

fm−1(xi )+νh(xi )︸ ︷︷ ︸
new piece




2

If H is closed under rescaling (i.e. if h ∈H, then vh ∈H for all h ∈ R), then don’t need ν.
Take ν= 1 and minimize

J(h) =
1
n

n∑
i=1

yi − fm−1(xi )︸ ︷︷ ︸
residual

−h(xi )

2

This is just fitting the residuals with least-squares regression!
If we can do regression with our base hypothesis space H, then we’re set!
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Regression Stumps

A regression stump is a regression tree with a single split.
A regression stump is a function of the form h(x) = a1(xi 6 c)+b1(xi > c).

5

-2

7

x ≤ 5 x > 5

-2 7

x

y

Plot courtesy of Brett Bernstein.
David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 18 / 58



L2 Boosting with Decision Stumps: Demo

Consider FSAM with L2 loss (i.e. L2 Boosting)
For base hypothesis space of regression stumps

Data we’ll fit with code:

x

y

Plot courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 21 / 58



L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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Example: AdaBoost

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 23 / 58



The Classification Problem

Outcome space Y= {−1,1}
Action space A= R
Score function f : X→A.
Margin for example (x ,y) is m = yf (x).

m > 0 ⇐⇒ classification correct
Larger m is better.
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Margin-Based Losses for Classification
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Exponential Loss

Introduce the exponential loss: `(y , f (x)) = exp(−yf (x)) .
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FSAM with Exponential Loss

Consider classification setting: Y= {−1,1}.
Take loss function to be the exponential loss:

`(y , f (x)) = exp(−yf (x)) .

Let H be a base hypothesis space of classifiers h : X→ {−1,1}.
(Also assume H closed under negation: h ∈H =⇒ −h ∈H)

Then Forward Stagewise Additive Modeling (FSAM) reduces to a version of AdaBoost.
Proof on Spring 2017 Homework #6, Problem 4 (and see HTF Section 10.4).
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Exponential Loss

Note that exponential loss puts a very large weight on bad misclassifications.
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AdaBoost / Exponential Loss: Robustness Issues

When Bayes error rate is high (e.g. P(f ∗(X ) 6= Y ) = 0.25)

e.g. there’s some intrinsic randomness in the label
e.g. training examples with same input, but different classifications.

Best we can do is predict the most likely class for each X .
Some training predictions should be wrong,

because example doesn’t have majority class
AdaBoost / exponential loss puts a lot of focus on getting those right

Empirically, AdaBoost has degraded performance in situations with
high Bayes error rate, or when there’s
high “ label noise”

Logistic loss performs better in settings with high Bayes error
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FSAM for Other Loss Functions

We know how to do FSAM for certain loss functions
e.g square loss, absolute loss, exponential loss,...

In each case, happens to reduce to another problem we know how to solve, at least
approximately.
However, not clear how to do FSAM in general.
For example, logistic loss / cross-entropy loss?
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Gradient Boosting / “Anyboost”
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FSAM Is Iterative Optimization

The FSAM step

(νm,hm) = argmin
ν∈R,h∈H

n∑
i=1

`

yi , fm−1(xi )+νh(xi )︸ ︷︷ ︸
new piece

 .

Hard part: finding the best step direction h.
What if we looked for the locally best step direction?

like in gradient descent
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“Functional” Gradient Descent

We want to minimize

J(f ) =
n∑

i=1

`(yi , f (xi )) .

In some sense, we want to take the gradient w.r.t. “f ”, whatever that means.
J(f ) only depends on f at the n training points.
Define

f = (f (x1), . . . , f (xn))
T

and write the objective function as

J(f) =
n∑

i=1

`(yi ,fi ) .
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Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

J(f) =
n∑

i=1

`(yi ,fi ) .

The negative gradient step direction at f is

−g = −∇f J(f)
= −(∂f1`(y1, f1) , . . . ,∂fn`(yn, fn))

which we can easily calculate.

−g ∈ Rn is the direction we want to change each of our n predictions on training data.

Eventually we need more than just f, which is just predictions on training.
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Functional Gradient Descent: Projection Step

Unconstrained step direction is

−g =−∇f J(f) = −(∂f1`(y1, f1) , . . . ,∂fn`(yn, fn)) .

Also called the “pseudo-residuals”
(for square loss, they’re exactly the residuals)

Find the closest base hypothesis h ∈H (in the `2 sense):

min
h∈H

n∑
i=1

(−gi −h(xi ))
2 .

This is a least squares regression problem over hypothesis space H.
Take the h ∈H that best approximates −g as our step direction.
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Functional Gradient Descent: Step Size

Finally, we choose a stepsize.
Option 1 (Line search):

νm = argmin
ν>0

n∑
i=1

` {yi , fm−1(xi )+νhm(xi )} .

Option 2: (Shrinkage parameter – more common)
We consider ν= 1 to be the full gradient step.
Choose a fixed ν ∈ (0,1) – called a shrinkage parameter.
A value of ν= 0.1 is typical – optimize as a hyperparameter .
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The Gradient Boosting Machine Ingredients (Recap)

Take any loss function [sub]differentiable w.r.t. the prediction
Choose a base hypothesis space for regression.
Choose number of steps (or a stopping criterion).
Choose step size methodology.
Then you’re good to go!
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Example: BinomialBoost
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BinomialBoost: Gradient Boosting with Logistic Loss

Recall the logistic loss for classification, with Y= {−1,1}:

`(y , f (x)) = log
(
1+ e−yf (x)

)
Pseudoresidual for i ’th example is negative derivative of loss w.r.t. prediction:

ri = −∂f (xi)

[
log
(
1+ e−yi f (xi)

)]
=

yie
−yi f (xi)

1+ e−yi f (xi)

=
yi

1+ eyi f (xi)
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BinomialBoost: Gradient Boosting with Logistic Loss

Pseudoresidual for ith example:

ri = −∂f (xi)

[
log
(
1+ e−yi f (xi)

)]
=

yi
1+ eyi f (xi)

So if fm−1(x) is prediction after m−1 rounds, step direction for m’th round is

hm = argmin
h∈H

n∑
i=1

[(
yi

1+ eyi fm−1(xi)

)
−h(xi )

]2

.

And fm(x) = fm−1(x)+νhm(x).
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Gradient Tree Boosting
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Gradient Tree Boosting

One common form of gradient boosting machine takes

H = {regression trees of size J} ,

where J is the number of terminal nodes.
J = 2 gives decision stumps
HTF recommends 46 J 6 8 (but more recent results use much larger trees)
Software packages:

Gradient tree boosting is implemented by the gbm package for R
as GradientBoostingClassifier and GradientBoostingRegressor in sklearn
xgboost and lightGBM are state of the art for speed and performance
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GBM Regression with Stumps
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Sinc Function: Our Dataset

From Natekin and Knoll’s "Gradient boosting machines, a tutorial"

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 44 / 58



Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with 1,10,50, and 100 steps, step size λ= 1.

Figure 3 from Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Step Size as Regularization

Performance vs rounds of boosting and step size. (Left is training set, right is validation set)

Figure 5 from Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Rule of Thumb

The smaller the step size, the more steps you’ll need.
But never seems to make results worse, and often better.
So set your step size as small as you have patience for.
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Variations on Gradient Boosting
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Stochastic Gradient Boosting

For each stage,
choose random subset of data for computing projected gradient step.
“Typically, about 50% of the dataset size, can be much smaller for large training set.”
Fraction is called the bag fraction.

Why do this?

Subsample percentage is additional regularization parameter – may help overfitting.
Faster.

We can view this is a minibatch method.
we’re estimating the “true” step direction (the projected gradient) using a subset of data

Introduced by Friedman (1999) in Stochastic Gradient Boosting.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 10, 2018 49 / 58

http://statweb.stanford.edu/~jhf/ftp/stobst.pdf


Bag as Minibatch

Just as we argued for minibatch SGD,
sample size needed for a good estimate of step direction is independent of training set size

Minibatch size should depend on
the complexity of base hypothesis space
the complexity of the target function (Bayes decision function)

Seems like an interesting area for both practical and theoretical pursuit.
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Column / Feature Subsampling for Regularization

Similar to random forest, randomly choose a subset of features for each round.

XGBoost paper says: “According to user feedback, using column sub-sampling prevents
overfitting even more so than the traditional row sub-sampling.”

Zhao Xing (top Kaggle competitor) finds optimal percentage to be 20%-100%
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Newton Step Direction

For GBM, we find the closest h ∈ F to the negative gradient

−g =−∇f J(f).

This is a “first order” method.

Newton’s method is a “second order method”:
Find 2nd order (quadratic) approximation to J at f .

Requires computing gradient and Hessian of J.

Newton step direction points towards minimizer of the quadratic.
Minimizer of quadratic is easy to find in closed form

Boosting methods with projected Newton step direction:
LogitBoost (logistic loss function)
XGBoost (any loss – uses regression trees for base classifier)
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Newton Step Direction for GBM

Generically, second order Taylor expansion of J at f in direction r

J(f+ r) = J(f)+ [∇fJ(f)]
T r+

1
2
rT
[
∇2

f J(f)
]
r

For J(f) =
∑n

i=1 `(yi , fi ),

J(f+ r) =
n∑

i=1

[
`(yi , fi )+gi ri +

1
2
hi r2i

]
,

where gi = ∂fi `(yi , fi ) and hi = ∂
2
fi `(yi , fi ).

Can find r that minimizes J(f+ r) in closed form.
Can take step direction to be “projection” of r into base hypothesis space H.
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XGBoost: Objective Function with Tree Penalty Term

Adds explicit penalty term on tree complexity to the empirical risk:

Ω(r) = γT +
1
2
λ

T∑
i=1

w2
j ,

where r ∈H is a regression tree from our base hypothesis space and
T is the number of leaf nodes and
wj is the prediction in the j ’th node

Objective function at step m:

J(r) =
n∑

i=1

[
gi r(xi )+

1
2
hi r(xi )

2
]
+Ω(r)

In XGBoost, they also use this objective to decide on tree splits

See XGBoost Introduction for a nice introduction.
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XGBoost: Rewriting objective function

For a given tree, let q(xi ) be xi ’s node assignment and wj the prediction for node j .

In each step of XGBoost we’re looking for a tree that minimizes

n∑
i=1

[
giwq(xi)+

1
2
hiw

2
q(xi)

]
+γT +

1
2
λ

T∑
i=1

w2
j

=

T∑
leaf node j=1




∑
i∈Ij

gi︸ ︷︷ ︸
Gj

wj +
1
2


∑
i∈Ij

hi︸ ︷︷ ︸
Hj

+λ

w2
j

+γT ,

where Ij = {i | q(xi ) = j} is set of training example indices landing in leaf j .
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XGBoost: Simple Expression for Tree Penalty/Loss

Simplifies to
T∑
j=1

[
Gjwj +

1
2
(Hj +λ)w

2
j

]
+γT

For fixed q(x) (i.e. fixed tree partitioning), objective minimized when leaf node values are

w∗j =−Gj/(Hj +λ) .

Plugging w∗j back in, this objective reduces to

−
1
2

T∑
j=1

G 2
j

Hj +λ
+γT ,

which we can think of as the loss for tree partitioning function q(x).

If time were no issue, we could search over all trees to mininize this objective.
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XGBoost: Building Tree Using Objective Function

Expression to evaluate a tree’s node assignment function q(x):

−
1
2

T∑
j=1

G 2
j

Hj +λ
+γT ,

where Gj =
∑

i∈Ij gi for examples i assigned to leaf node j . And Hj =
∑

i∈Ij hi .

Suppose we’re considering splitting some data into two nodes: L and R .
Loss of tree with this one split is

−
1
2

[
G 2
L

HL+λ
+

G 2
R

HR +λ

]
+2γ.

Without the split – i.e. a tree with a single leaf node, loss is

−
1
2

[
(GL+GR)

2

HL+HR +λ

]
+γ.
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XGBoost: Node Splitting Criterion

We can define the gain of a split to be the reduction in objective between tree with and
without split:

Gain =
1
2

[
G 2
L

HL+λ
+

G 2
R

HR +λ
−

(GL+GR)
2

HL+HR +λ

]
−γ.

Tree building method:
recursively choose split that maximizes the gain.
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