Backpropagation and the Chain Rule

David S. Rosenberg
New York University

April 17, 2018

Contents

(1) Introduction
(2) Partial Derivatives and the Chain Rule
(3) Example: Least Squares Regression
(4) Example: Ridge Regression
(5) General Backpropagation

Introduction

Learning with Back-Propagation

- Back-propagation is an algorithm for computing the gradient
- With lots of chain rule, you could also work out the gradient by hand.
- Back-propagation is
- a clean way to organize the computation of the gradient
- an efficient way to compute the gradient

Partial Derivatives and the Chain Rule

Partial Derivatives

- Consider a function $g: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$.

- Broken out into components:

Partial Derivatives

- Consider a function $g: \mathrm{R}^{p} \rightarrow \mathrm{R}^{n}$.

- Partial derivative $\frac{\partial b_{i}}{\partial a_{j}}$ is the instantaneous rate of change of b_{i} as we change a_{j}.
- If we change a_{j} slightly to $a_{j}+\delta$,
- Then (for small δ), b_{i} changes to approximately $b_{i}+\frac{\partial b_{i}}{\partial a_{j}} \delta$.

Partial Derivatives of an Affine Function

- Define the affine function $g(x)=M x+c$, for $M \in \mathbf{R}^{n \times p}$ and $c \in \mathbf{R}$.

- If we let $b=g(a)$, then what is b_{i} ?
- b_{i} depends on the i th row of M :

$$
b_{i}=\sum_{k=1}^{p} M_{i k} a_{k}+c_{i}
$$

and

$$
\frac{\partial b_{i}}{\partial a_{j}}=M_{i j}
$$

- So for an an affine mapping, entries of matrix M directly tell us the rates of change.

Chain Rule (in terms of partial derivatives)

- $g: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Let $b=g(a)$. Let $c=f(b)$.

- Chain rule says that

$$
\frac{\partial c_{i}}{\partial a_{j}}=\sum_{k=1}^{n} \frac{\partial c_{i}}{\partial b_{k}} \frac{\partial b_{k}}{\partial a_{j}} .
$$

- Change in a_{j} may change each of b_{1}, \ldots, b_{n}.
- Changes in b_{1}, \ldots, b_{n} may each effect c_{i}.
- Chain rule tells us that, to first order, the net change in c_{i} is
- the sum of the changes induced along each path from a_{j} to c_{i}.

Example: Least Squares Regression

Review: Linear least squares

- Hypothesis space $\left\{f(x)=w^{T} x+b \mid w \in \mathbf{R}^{d}, b \in \mathbf{R}\right\}$.
- Data set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbf{R}^{d} \times \mathbf{R}$.
- Define

$$
\ell_{i}(w, b)=\left[\left(w^{T} x_{i}+b\right)-y_{i}\right]^{2} .
$$

- In SGD, in each round we'd choose a random index $i \in 1, \ldots, n$ and take a gradient step

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\eta \frac{\partial \ell_{i}(w, b)}{\partial w_{j}}, \text { for } j=1, \ldots, d \\
b & \leftarrow b-\eta \frac{\partial \ell_{i}(w, b)}{\partial b}
\end{aligned}
$$

for some step size $\eta>0$.

- Let's revisit how to calculate these partial derivatives...

Computation Graph and Intermediate Variables

- For a generic training point (x, y), denote the loss by

$$
\ell(w, b)=\left[\left(w^{T} x+b\right)-y\right]^{2} .
$$

- Let's break this down into some intermediate computations:

$$
\begin{aligned}
\text { (prediction) } \hat{y} & =\sum_{j=1}^{d} w_{j} x_{j}+b
\end{aligned} \quad \begin{gathered}
\text { Parameters } \\
\begin{aligned}
\text { (residual) } r & =y-\hat{y} \\
\text { (loss) } \ell & =r^{2}
\end{aligned}
\end{gathered}
$$

Partial Derivatives on Computation Graph

- We'll work our way from graph output ℓ back to the parameters w and b :

$$
\begin{aligned}
\frac{\partial \ell}{\partial r} & =2 r \\
\frac{\partial \ell}{\partial \hat{y}} & =\frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}}=(2 r)(-1)=-2 r \\
\frac{\partial \ell}{\partial b} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b}=(-2 r)(1)=-2 r \\
\frac{\partial \ell}{\partial w_{j}} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{j}}=(-2 r) x_{j}=-2 r x_{j}
\end{aligned}
$$

Example: Ridge Regression

Ridge Regression: Computation Graph and Intermediate Variables

- For training point (x, y), the ℓ_{2}-regularized objective function is

$$
J(w, b)=\left[\left(w^{T} x+b\right)-y\right]^{2}+\lambda w^{T} w .
$$

- Let's break this down into some intermediate computations:

$$
\begin{aligned}
\text { (prediction) } \hat{y} & =\sum_{j=1}^{d} w_{j} x_{j}+b \\
\text { (residual) } r & =y-\hat{y} \\
\text { (loss) } \ell & =r^{2} \\
\text { (regularization) } R & =\lambda w^{\top} w \\
\text { (objective) } J & =\ell+R
\end{aligned}
$$

Training Example

Partial Derivatives on Computation Graph

- We'll work our way from graph output ℓ back to the parameters w and b :

$$
\begin{aligned}
\frac{\partial J}{\partial \ell} & =\frac{\partial J}{\partial R}=1 \\
\frac{\partial J}{\partial \hat{y}} & =\frac{\partial J}{\partial \ell} \frac{\partial l}{\partial r} \frac{\partial r}{\partial \hat{y}}=(1)(2 r)(-1)=-2 r \\
\frac{\partial J}{\partial b} & =\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b}=(-2 r)(1)=-2 r \\
\frac{\partial J}{\partial w_{j}} & =?
\end{aligned}
$$

Handling Nodes with Multiple Children

- Consider $a \mapsto J=h(f(a), g(a))$.

- It's helpful to think about having two independent copies of a, call them $a^{(1)}$ and $a^{(2)} \ldots$

Handling Nodes with Multiple Children

- Derivative w.r.t. a is the sum of derivatives w.r.t. each copy of a.

Partial Derivatives on Computation Graph

- We'll work our way from graph output ℓ back to the parameters w and b :

$$
\begin{aligned}
& \text { Parameters } \lambda \rightarrow \\
& \frac{\partial J}{\partial \hat{y}}=\frac{\partial J}{\partial \ell} \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}}=(1)(2 r)(-1)=-2 r \\
& \frac{\partial J}{\partial w_{j}^{(2)}}=\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{j}^{(2)}}=\frac{\partial J}{\partial \hat{y}} x_{j} \\
& \frac{\partial J}{\partial w_{j}^{(1)}}=\frac{\partial J}{\partial R} \frac{\partial R}{\partial w_{j}^{(1)}}=(1)\left(2 \lambda w_{j}^{(1)}\right) \\
& \frac{\partial J}{\partial w_{j}}=\frac{\partial J}{\partial w_{j}^{(1)}}+\frac{\partial J}{\partial w_{j}^{(2)}}
\end{aligned}
$$

General Backpropagation

Backpropagation: Overview

- Backpropagation is a specific way to evaluate the partial derivatives of a computation graph output J w.r.t. the inputs and outputs of all nodes.
- Backpropagation works node-by-node.
- To run a "backward" step at a node f, we assume
- we've already run "backward" for all of f 's children.
- Backward at node $f: a \mapsto b$ returns
- Partial of objective value J w.r.t. f's output: $\frac{\partial J}{\partial b}$
- Partial of objective value J w.r.t f 's input: $\frac{\partial J}{\partial a}$

Backpropagation: Simple Case

- Simple case: all nodes take a single scalar as input and have a single scalar output.
- Backprop for node f :

- Input: $\frac{\partial J}{\partial b^{(1)}}, \ldots, \frac{\partial J}{\partial b^{(N)}}$ (Partials w.r.t. inputs to all children)
- Output:

$$
\begin{aligned}
\frac{\partial J}{\partial b} & =\sum_{k=1}^{N} \frac{\partial J}{\partial b^{(k)}} \\
\frac{\partial J}{\partial a} & =\frac{\partial J}{\partial b} \frac{\partial b}{\partial a}
\end{aligned}
$$

Backpropagation (General case)

- More generally, consider $f: \mathbf{R}^{d} \rightarrow \mathbf{R}^{n}$.

- Input: $\frac{\partial J}{\partial b_{j}^{(i)}}, i=1, \ldots, N, j=1, \ldots, n$
- Output:

$$
\begin{aligned}
\frac{\partial J}{\partial b_{j}} & =\sum_{k=1}^{N} \frac{\partial J}{\partial b_{j}^{(k)}} \\
\frac{\partial J}{\partial a_{i}} & =\sum_{j=1}^{n} \frac{\partial J}{\partial b_{j}} \frac{\partial b_{j}}{\partial a_{i}}
\end{aligned}
$$

Running Backpropagation

- If we run "backward" on every node in our graph,
- we'll have the gradients of J w.r.t. all our parameters.
- To run backward on a particular node,
- we assumed we already ran it on all children.
- A topological sort of the nodes in a directed [acyclic] graph
- is an ordering which every node appears before its children.
- So we'll evaluate backward on nodes in a reverse topological ordering.

