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Introduction
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Learning with Back-Propagation

@ Back-propagation is an algorithm for computing the gradient
@ With lots of chain rule, you could also work out the gradient by hand.
@ Back-propagation is

e a clean way to organize the computation of the gradient

e an efficient way to compute the gradient
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Partial Derivatives and the Chain Rule J
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Partial Derivatives

e Consider a function g:RP — R".

@ Typical computation graph: @ Broken out into components:

a b a,
R R | 2

ae K LeR’
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Partial Derivatives

e Consider a function g:RP — R".

al b; o Partial derivative ggj{ is the instantaneous
az_ b rate of change of b; as we change a;.
: .2’ o If we change a; slightly to a; +35,
a lf) @ Then (.for small 6)'aii- changes to
L_L l n ’ approximately b; + aaj’,é.

ae K LeR’
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Partial Derivatives of an Affine Function

@ Define the affine function g(x) = Mx+c¢, for M € R"™P and c € R.

A b‘ o If we let b= g(a), then what is b;?
%2 ‘DZ, @ b; depends on the ith row of M:
a b

P
b = Z Micak +ci
n i ik 9k i
L_il‘> LJ " k=1
ae LeR o
ob;
— = Mj;.
aaj v
@ So for an an affine mapping, entries of
matrix M directly tell us the rates of
change.
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Chain Rule (in terms of partial derivatives)

@ g:RP >R"and f:R" — R™. Let b=g(a). Let c =f(b).

b, .
@ Chain rule says that

2 A c, )
5 2 g 0 ony
: k=1

Cm aaj by aaj .
a
P 1 1
(AN . .
ek’ bek ek
e Change in a; may change each of by, ..., by.
@ Changes in by,..., b, may each effect ¢;.

@ Chain rule tells us that, to first order, the net change in ¢; is
o the sum of the changes induced along each path from a; to ¢;.
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Example: Least Squares Regression J
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Review: Linear least squares

@ Hypothesis space {f(x) =wlx+b|lweR9 be R}.
e Data set (x1,y1),...,(xn yn) € R xR.
@ Define )
ti(w,b) = [(wx;+b) —yi]
@ In SGD, in each round we'd choose a random index i € 1,...,n and take a gradient step
oli(w, b .
Wi vn/j—né::j), forj=1,...,d
af,'(W,b)
b b—n——,
N>

for some step size 1 > 0.

@ Let's revisit how to calculate these partial derivatives...
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Computation Graph and Intermediate Variables

@ For a generic training point (x, y), denote the loss by
Uw, b) = [(WTX-i-b) —y]z.

@ Let's break this down into some intermediate computations:

r]omfv\ﬁr—f Tammg 0b1e<hv€

wjx; + b
. -4 D- 0
(residual) r =

(loss) £ = r? ¥ Y
T -
romny Exaw\rla

M=

(prediction) y =

S < 'ﬂ
| =
<>
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

W /Q ? = 2r
B
b @ ¢ ()2 e al = a—ea—i:(Zr)(—l):—%
oy or oy
* Y % _ g;gi:(—z)(l):—zr
:Vij = g;aav};:(_%))g:_%)(j
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Example: Ridge Regression
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Ridge Regression: Computation Graph and Intermediate Variables

@ For training point (x, y), the {>-regularized objective function is

J(w,b) = [(wTx+b)—y]* +AwTw.

@ Let's break this down into some intermediate computations:

A

(prediction) y =

(residual) r =

(loss) ¢

(regularization) R
(objective) J = {+R
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

(Bv ame*'er S

Trainin ¥ Ex ;?v‘rll
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Handling Nodes with Multiple Children

e Consider a+ J = h(f(a),g(a)).

% O=x
TS S

e It's helpful to think about having two independent copies of a, call them a1} and a?)...
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Handling Nodes with Multiple Children

0)
Pre

oJ oJ 02V 9aJ 0a@
oo AO—>T Uy

) 92 2a® 292 3.2 0a
/K VY,
& = 220 320

@ Derivative w.r.t. ais the sum of derivatives w.r.t. each copy of a.
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

Trainir\a Ex?ﬂr]¢
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General Backpropagation J
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Backpropagation: Overview

@ Backpropagation is a specific way to evaluate the partial derivatives of a computation
graph output J w.r.t. the inputs and outputs of all nodes.
o Backpropagation works node-by-node.
@ To run a “backward” step at a node f, we assume
o we've already run “backward” for all of f's children.
e Backward at node f:a+> b returns
o Partial of objective value J w.r.t. f's output: %

o Partial of objective value J w.r.t f's input: %
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Backpropagation: Simple Case

@ Simple case: all nodes take a single scalar as input and have a single scalar output.

e Backprop for node f:

. _oJ 2J
o Input: S5 3N

(Partials w.r.t. inputs to all children)

e Output:
o i 2J
- 3pk)
0b kzlab(J
o _ aJob
da  0boa
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Backpropagation (General case)

@ More generally, consider f : RY - R".
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9J

o Input: ab}”, i=1,
e Output:
o
ob; N
o
aa,' -
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Running Backpropagation

o If we run "backward” on every node in our graph,
o we'll have the gradients of J w.r.t. all our parameters.

To run backward on a particular node,
e we assumed we already ran it on all children.

A topological sort of the nodes in a directed [acyclic] graph
e is an ordering which every node appears before its children.

So we'll evaluate backward on nodes in a reverse topological ordering.
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