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k-Means Clustering
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Example: Old Faithful Geyser

Looks like two clusters.
How to find these clusters algorithmically?
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k-Means: By Example

Standardize the data.
Choose two cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(a).
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k-means: by example

Assign each point to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(b).
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k-means: by example

Compute new class centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(c).
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k-means: by example

Assign points to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(d).
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k-means: by example

Compute cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(e).
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k-means: by example

Iterate until convergence.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(i).
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k-Means Algorithm: Standardizing the data

Without standardizing:

Blue and black show results of k-means clustering
Wait time dominates the distance metric
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k-Means Algorithm: Standardizing the data

With standardizing:
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k-Means: Failure Cases
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k-Means: Suboptimal Local Minimum

The clustering for k = 3 below is a local minimum, but suboptimal:

From Sontag’s DS-GA 1003, 2014, Lecture 8.
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k-means Formalized
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k-Means: Setting

Let X be a space with some distance metric d .

Most commonly, X= Rd and d(x ,x ′) = ‖x − x ′‖.

Dataset D= {x1, . . . ,xn}⊂ X.
Goal: Partition data D into k disjoint sets C1, . . . ,Ck .
The centroid of Ci is defined to be

µi = µ(Ci ) = argmin
µ∈X

∑
x∈Ci

d(x ,µ)2.

Note: For Euclidean distance on Rd , µ(Ci ) is the mean of Ci .

Based on Shalev-Shwartz and Ben-David’s book Understanding Machine Learning, Ch 22.
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k-Means: Objective function

The k-means objective is

Jk-means(C1, . . . ,Ck) =

k∑
i=1

∑
x∈Ci

d(x ,µ(Ci ))
2

= min
µ1,...,µk∈X

k∑
i=1

∑
x∈Ci

d(x ,µi )
2

In vector quantization, we represent each x ∈ Ci by the centroid µi .
We can think of this as lossy data compression,

the k-means objective can be viewed as the reconstruction error.

How many bits does it take to represent each point with vector quantization?

If k = 2d , then d bits. (Fewer on average if the clusters have unequal sizes.)
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k-Means: Algorithm

input: D= {x1, . . . ,xd }⊂ X

initialize: Randomly choose initial centroids µ1, . . . ,µk ⊂D.
repeat until convergence (i.e. until the centroids or clusters repeat):

∀i , let Ci =
{
x ∈D : i = argminj d(x ,µj )

}
. (break ties in some arbitrary manner)

∀i , let µi = argminµ∈X
∑

x∈Ci
d(x ,µ)2. (For Euclidean distance, µi =

1
|Ci |

∑
x∈Ci

x)
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k-Means++

In k-means, objective never increases, but no guarantee to find minimizer.
General recommendation is to re-run with several random starting initial centroids.
k-means++ is a way to randomly initialize the centroids with some guarantees:

Randomly choose first centroid from the data points D.
For each of the remaining k−1 centroids:

Compute distance from each xi to the closest already chosen centroid.
Randomly choose next centroid with probability proportional to the computed distance squared.

If we let J∗k-means be the minimizer of the k-means objective, then using k-means++ for
initialization guarantees that

E [Jk-means(C1, . . . ,Ck)]6 8(logk+2)J∗k-means.
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