
Gaussian Mixture Models

David S. Rosenberg

New York University

April 24, 2018

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 1 / 35



Contents

1 Gaussian Mixture Models

2 Mixture Models

3 Learning in Gaussian Mixture Models

4 Issues with MLE for GMM

5 The EM Algorithm for GMM

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 2 / 35



Gaussian Mixture Models
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Probabilistic Model for Clustering

Let’s consider the following generative model (i.e. a way to generate data).
Suppose

1 There are k clusters (or “mixture components”).
2 We have a probability density for each cluster.

Generate a point as follows
1 Choose a random cluster z ∈ {1,2, . . . ,k}.
2 Choose a point from the distribution for cluster z .

Data generated in this way is said to have a mixture distribution.
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Gaussian Mixture Model (k = 3)

1 Choose z ∈ {1,2,3} with p(1) = p(2) = p(3) = 1
3 .

2 Choose x | z ∼ N (X | µz ,Σz).
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Gaussian Mixture Model Parameters (k Components)

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

For now, suppose all these parameters are known.
We’ll discuss how to learn or estimate them later.
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Gaussian Mixture Model: Joint Distribution

Factorize the joint density:

p(x ,z) = p(z)p(x | z)

= πzN (x | µz ,Σz)

πz is probability of choosing cluster z .
x | z has distribution N(µz ,Σz).
z corresponding to x is the true cluster assignment.

Suppose we know the model parameters πz ,µz ,Σz .

Then we can easily evaluate the joint density p(x ,z).
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Latent Variable Model

We observe x .
We don’t observe z (the cluster assignment).
Cluster assignment z is called a hidden variable or latent variable.

Definition
A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.
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The GMM “Inference” Problem

We observe x . We want to know its cluster assignment z .
The conditional probability for cluster z given x is

p(z | x) = p(x ,z)/p(x)

The conditional distribution is a soft assignment to clusters.
A hard assignment is

z∗ = argmax
z∈{1,...,k}

p(z | x).

So if we know the model parameters, clustering is trival.
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Mixture Models
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General Mixture Models: Generative Construction

Let S be a set of k probability distributions (“mixture components”).
Let π= (π1, . . . ,πk) be a distribution on {1, . . . ,k} (“mixture weights”)
Suppose we generate x with the following procedure:

1 Choose a distribution randomly from S according to π.
2 Sample x from the chosen distribution.

Then we say x has a mixture distribution.
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Mixture Densities

Suppose we have a mixture distribution with
mixture components represented as densities p1, . . . ,pk , and
mixture weights π= (π1, . . . ,πk) , then

the corresponding probability density for x is

p(x) =
k∑

i=1

πipi (x).

Note that p is a convex combination of the mixture component densities.
p(x) is called a mixture density.
Conversely, if x has a density of this form, then x has a mixture distribution.
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Gaussian Mixture Model (GMM): Marginal Distribution

For example:
The marginal distribution for a single observation x in a GMM is

p(x) =

k∑
z=1

p(x ,z)

=

k∑
z=1

πzN (x | µz ,Σz)
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Learning in Gaussian Mixture Models
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The GMM “Learning” Problem

Given data x1, . . . ,xn drawn from a GMM,
Estimate the parameters:

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

Once we have the parameters, we’re done.
Just do “inference” to get cluster assignments.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 15 / 35



Estimating/Learning the Gaussian Mixture Model

One approach to learning is maximum likelihood
find parameter values with highest likelihood for the observed data.

The model likelihood for D= (x1, . . . ,xn) sampled iid from a GMM is

L(π,µ,Σ) =

n∏
i=1

p(xi )

=

n∏
i=1

k∑
z=1

πzN (xi | µz ,Σz) .

As usual, we’ll take our objective function to be the log of this:

J(π,µ,Σ) =

n∑
i=1

log

{
k∑

z=1

πzN (xi | µz ,Σz)

}
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Review: Estimating a Gaussian Distribution

Recall that the density for x ∼ N (µ,Σ) is

p(x | µ,Σ) =
1√
|2πΣ|

exp

(
−
1
2
(x −µ)TΣ−1(x −µ)

)
And the log-density is

logp(x | µ,Σ) = −
1
2
log |2πΣ|−

1
2
(x −µ)TΣ−1(x −µ)

To estimate µ and Σ from a sample x1, . . . ,xn i.i.d. N (µ,Σ), we’ll maximize the log joint
density:

n∑
i=1

logp(xi | µ,Σ) = −
n

2
log |2πΣ|−

1
2

n∑
i=1

(xi −µ)
TΣ−1(xi −µ)
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Review: Estimating a Gaussian Distribution

To estimate µ and Σ from a sample x1, . . . ,xn i.i.d. N (µ,Σ), we’ll maximize the log joint
density:

J(µ,Σ) =
n∑

i=1

logp(x | µ,Σ) = −
n

2
log |2πΣ|−

1
2

n∑
i=1

(xi −µ)
TΣ−1(xi −µ)

This is a solid exercise in vector and matrix differentiation. Find µ̂ and Σ̂ satisfying

∇µJ(µ,Σ) = 0 ∇ΣJ(µ,Σ) = 0

We get a closed form solution:

µ̂MLE =
1
n

n∑
i=1

xi

Σ̂MLE =
1
n

n∑
i=1

(xi − µ̂MLE)
T (xi − µ̂MLE)
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Properties of the GMM Log-Likelihood

GMM log-likelihood:

J(π,µ,Σ) =

n∑
i=1

log

{
k∑

z=1

πz√
|2πΣz |

exp

(
−
1
2
(x −µz)

TΣ−1
z (x −µz)

)}

Let’s compare to the log-likelihood for a single Gaussian:

J(µ,Σ) = −
n

2
log |2πΣ|−

1
2

n∑
i=1

(xi −µ)
TΣ−1(xi −µ)

For a single Gaussian, the log cancels the exp in the Gaussian density.
=⇒ Things simplify a lot.

For the GMM, the sum inside the log prevents this cancellation.
=⇒ Expression more complicated. No closed form expression for MLE.
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Issues with MLE for GMM
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Identifiability Issues for GMM

Suppose we have found parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

that are at a local minimum.

What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.

We’ll get the same likelihood. How many such equivalent settings are there?

Assuming all clusters are distinct, there are k! equivalent solutions.

Not a problem per se, but something to be aware of.
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Singularities for GMM

Consider the following GMM for 7 data points:

Let σ2 be the variance of the skinny component.
What happens to the likelihood as σ2 → 0?
In practice, we end up in local minima that do not have this problem.

Or keep restarting optimization until we do.

Bayesian approach or regularization will also solve the problem.
From Bishop’s Pattern recognition and machine learning, Figure 9.7.
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Gradient Descent / SGD for GMM

What about running gradient descent or SGD on

J(π,µ,Σ) = −

n∑
i=1

log

{
k∑

z=1

πzN (xi | µz ,Σz)

}
?

Can be done, in principle – but need to be clever about it.
Each matrix Σ1, . . . ,Σk has to be positive semidefinite.
How to maintain that constraint?

Rewrite Σi =MiM
T
i , where Mi is an unconstrained matrix.

Then Σi is positive semidefinite.

Even then, pure gradient-based methods have trouble.1

1See Hosseini and Sra’s Manifold Optimization for Gaussian Mixture Models for discussion and further
references.
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The EM Algorithm for GMM
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MLE for Gaussian Model

Let’s start by considering the MLE for the Gaussian model.
For data D= {x1, . . . ,xn}, the log likelihood is given by

n∑
i=1

logN (xi | µ,Σ) = −
nd

2
log (2π)−

n

2
log |Σ|−

1
2

n∑
i=1

(xi −µ)
′Σ−1(xi −µ).

With some calculus, we find that the MLE parameters are

µMLE =
1
n

n∑
i=1

xi

ΣMLE =
1
n

n∑
i=1

(xi −µMLE)(xi −µMLE)
T

For GMM, If we knew the cluster assignment zi for each xi ,
we could compute the MLEs for each cluster.
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Estimating a Fully-Observed GMM

Suppose we observe (x1,z1) , . . . ,(xn,zn) i.i.d. from GMM p(x ,z).
Them find MLE is easy:

nz =

n∑
i=1

1(zi = z)

π̂(z) =
nz
n

µ̂z =
1
nz

∑
i :zi=z

xi

Σ̂z =
1
nz

∑
i :zi=z

(xi − µ̂z)(xi − µ̂z)
T .

In the EM algorithm we will modify the equations to handle our evolving soft
assignments, which we will call responsibilities.
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Cluster Responsibilities: Some New Notation

Denote the probability that observed value xi comes from cluster j by

γ
j
i = p (z = j | x = xi ) .

The responsibility that cluster j takes for observation xi .
Computationally,

γ
j
i = p (z = j | xi ) .

= p (z = j ,xi )/p(xi )

=
πjN (xi | µj ,Σj)∑k

c=1πcN (xi | µc ,Σc)

The vector
(
γ1
i , . . . ,γ

k
i

)
is exactly the soft assignment for xi .

Let nc =
∑n

i=1γ
c
i be the “number” of points “soft assigned” to cluster c .

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 27 / 35



EM Algorithm for GMM: Overview

If we know µj ,Σj ,πj for all clusters j , then easy to find

γ
j
i = p(z = j | xi )

If we know the (soft) assignments, we can easily find estimates for π,Σ,µ.
Repeatedly alternate these two steps.
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EM Algorithm for GMM: Overview

1 Initialize parameters µ,Σ,π (e.g. using k-means).
2 “E step”. Evaluate the responsibilities using current parameters:

γ
j
i =

πjN (xi | µj ,Σj)∑k
c=1πcN (xi | µc ,Σc)

,

for i = 1, . . . ,n and j = 1, . . . ,k .
3 “M step”. Re-estimate the parameters using responsibilities:

µnew
c =

1
nc

n∑
i=1

γci xi

Σnew
c =

1
nc

n∑
i=1

γci (xi −µ
new
c )(xi −µ

new
c )T

πnew
c =

nc
n
,

4 Repeat from Step 2, until log-likelihood converges.
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EM for GMM

Initialization

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

After 5 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

After 20 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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Relation to k-Means

EM for GMM seems a little like k-means.
In fact, k-means is a limiting case of a restricted version of GMM.
First, fix each cluster covariance matrix to be σ2I .

(This is the restriction: covariance matrices are fixed, and not iteratively estimated.)

As we take σ2 → 0, the update equations converge to doing k-means.
If you do a quick experiment yourself, you’ll find

Soft assignments converge to hard assignments.
Has to do with the tail behavior (exponential decay) of Gaussian.
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