EM Algorithm for Latent Variable Models

David S. Rosenberg

New York University

April 24, 2018

Contents

(1) Latent Variable Models
(2) EM Algorithm (and Variational Methods) - The Big Picture
(3) Math Prerequisites
(4) The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$
(5) Does EM Work?
(6) Variations on EM
(7) Summer Homework: Gaussian Mixture Model (Hints)

Latent Variable Models

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$
p(x, z \mid \theta)
$$

Definition

A latent variable model is a probability model for which certain variables are never observed.
e.g. The Gaussian mixture model is a latent variable model.

Complete and Incomplete Data

- Suppose we observe some data $\left(x_{1}, \ldots, x_{n}\right)$.
- To simplify notation, take x to represent the entire dataset

$$
x=\left(x_{1}, \ldots, x_{n}\right),
$$

and z to represent the corresponding unobserved variables

$$
z=\left(z_{1}, \ldots, z_{n}\right)
$$

- An observation of x is called an incomplete data set.
- An observation (x, z) is called a complete data set.

Our Objectives

- Learning problem: Given incomplete dataset x, find MLE

$$
\hat{\theta}=\underset{\theta}{\arg \max } p(x \mid \theta) .
$$

- Inference problem: Given x, find conditional distribution over z :

$$
p(z \mid x, \theta) .
$$

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)

Log-Likelihood and Terminology

- Note that

$$
\underset{\theta}{\arg \max } p(x \mid \theta)=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- Often easier to work with this "log-likelihood".
- We often call $p(x)$ the marginal likelihood,
- because it is $p(x, z)$ with z "marginalized out":

$$
p(x)=\sum_{z} p(x, z)
$$

- We often call $p(x, z)$ the joint. (for "joint distribution")
- Similarly, $\log p(x)$ is the marginal log-likelihood.

EM Algorithm (and Variational Methods) - The Big Picture

Big Picture Idea

- Want to find θ by maximizing the likelihood of the observed data x :

$$
\hat{\theta}=\underset{\theta \in \Theta}{\arg \max }[\log p(x \mid \theta)]
$$

- Unfortunately this may be hard to do directly.
- Approach: Generate a family of lower bounds on $\theta \mapsto \log p(x \mid \theta)$.
- For every $q \in Q$, we will have a lower bound:

$$
\log p(x \mid \theta) \geqslant \mathcal{L}_{q}(\theta) \quad \forall \theta \in \Theta
$$

- We will try to find the maximum over all lower bounds:

$$
\hat{\theta}=\underset{\theta \in \Theta}{\arg \max }\left[\sup _{q \in \mathcal{Q}} \mathcal{L}_{q}(\theta)\right]
$$

The Marginal Log-Likelihood Function

The Maximum Likelihood Estimator

Lower Bounds on Marginal Log-Likelihood

Supremum over Lower Bounds is a Lower Bound

Parameter Estimate: Max over all lower bounds

The Expected Complete Data Log-Likelihood

- Marginal log-likelihood is hard to optimize:

$$
\max _{\theta} \log p(x \mid \theta)
$$

- Typically the complete data log-likelihood is easy to optimize:

$$
\max _{\theta} \log p(x, z \mid \theta)
$$

- What if we had a distribution $q(z)$ for the latent variables z ?

The Expected Complete Data Log-Likelihood

- Suppose we have a distribution $q(z)$ on latent variable z.
- Then maximize the expected complete data log-likelihood:

$$
\max _{\theta} \sum_{z} q(z) \log p(x, z \mid \theta)
$$

- If q puts lots of weight on actual z, this could be a good approximation to MLE
- EM assumes this maximization is relatively easy.
- (This is true for GMM.)

Math Prerequisites

Jensen's Inequality

Theorem (Jensen's Inequality)
If $f: \mathbf{R} \rightarrow \mathbf{R}$ is a convex function, and x is a random variable, then

$$
\mathbb{E} f(x) \geqslant f(\mathbb{E} x)
$$

Moreover, if f is strictly convex, then equality implies that $x=\mathbb{E x}$ with probability 1 (i.e. x is a constant).

- e.g. $f(x)=x^{2}$ is convex. So $\mathbb{E} x^{2} \geqslant(\mathbb{E} x)^{2}$. Thus

$$
\operatorname{Var}(x)=\mathbb{E} x^{2}-(\mathbb{E} x)^{2} \geqslant 0
$$

Kullback-Leibler Divergence

- Let $p(x)$ and $q(x)$ be probability mass functions (PMFs) on X.
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$
\operatorname{KL}(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

(Assumes $q(x)=0$ implies $p(x)=0$.)

- Can also write this as

$$
\operatorname{KL}(p \| q)=\mathbb{E}_{x \sim p} \log \frac{p(x)}{q(x)}
$$

Gibbs Inequality $(\operatorname{KL}(p \| q) \geqslant 0$ and $\operatorname{KL}(p \| p)=0)$

Theorem (Gibbs Inequality)
Let $p(x)$ and $q(x)$ be PMFs on X. Then

$$
K L(p \| q) \geqslant 0
$$

with equality iff $p(x)=q(x)$ for all $x \in X$.

- KL divergence measures the "distance" between distributions.
- Note:
- KL divergence not a metric.
- KL divergence is not symmetric.

Gibbs Inequality: Proof

$$
\begin{aligned}
\operatorname{KL}(p \| q) & =\mathbb{E}_{p}\left[-\log \left(\frac{q(x)}{p(x)}\right)\right] \\
& \geqslant-\log \left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \\
& =-\log \left[\sum_{\{x \mid p(x)>0\}} p(x) \frac{q(x)}{p(x)}\right] \\
& =-\log \left[\sum_{x \in X} q(x)\right] \\
& =-\log 1=0 .
\end{aligned}
$$

- Since $-\log$ is strictly convex, we have strict equality iff $q(x) / p(x)$ is a constant, which implies $q=p$.

The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$

Lower Bound for Marginal Log-Likelihood

- Let $q(z)$ be any PMF on z, the support of z :

$$
\begin{aligned}
\log p(x \mid \theta) & =\log \left[\sum_{z} p(x, z \mid \theta)\right] \\
& =\log \left[\sum_{z} q(z)\left(\frac{p(x, z \mid \theta)}{q(z)}\right)\right] \quad \text { (log of an expectation) } \\
& \geqslant \sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) \quad \text { (expectation of } \log \text {) }
\end{aligned}
$$

- Inequality is by Jensen's, by concavity of the log.

This inequality is the basis for "variational methods", of which EM is a basic example.

The ELBO

- For any PMF $q(z)$, we have a lower bound on the marginal log-likelihood

$$
\log p(x \mid \theta) \geqslant \underbrace{\sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right)}_{\mathcal{L}(q, \theta)}
$$

- Marginal \log likelihood $\log p(x \mid \theta)$ also called the evidence.
- $\mathcal{L}(q, \theta)$ is the evidence lower bound, or "ELBO".

In EM algorithm (and variational methods more generally), we maximize $\mathcal{L}(q, \theta)$ over q and θ.

MLE, EM, and the ELBO

- For any PMF $q(z)$, we have a lower bound on the marginal log-likelihood

$$
\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta)
$$

- The MLE is defined as a maximum over θ :

$$
\hat{\theta}_{\text {MLE }}=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- In EM algorithm, we maximize the lower bound (ELBO) over θ and q :

$$
\hat{\theta}_{\mathrm{EM}} \approx \underset{\theta}{\arg \max }\left[\max _{q} \mathcal{L}(q, \theta)\right]
$$

- In EM algorithm, q ranges over all distributions on z.

A Family of Lower Bounds

- For each q, we get a lower bound function: $\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta) \forall \theta$.
- Two lower bounds (blue and green curves), as functions of θ :

- Ideally, we'd find the maximum of the red curve. Maximum of green is close.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

EM: Coordinate Ascent on Lower Bound

- Choose sequence of q 's and θ 's by "coordinate ascent" on $\mathcal{L}(q, \theta)$.
- EM Algorithm (high level):
(1) Choose initial $\theta^{\text {old }}$.
(2) Let $q^{*}=\arg \max _{q} \mathcal{L}\left(q, \theta^{\text {old }}\right)$
(3) Let $\theta^{\text {new }}=\arg \max _{\theta} \mathcal{L}\left(q^{*}, \theta^{\text {old }}\right)$.
(c) Go to step 2 , until converged.
- Will show: $p\left(x \mid \theta^{\text {new }}\right) \geqslant p\left(x \mid \theta^{\text {old }}\right)$
- Get sequence of θ 's with monotonically increasing likelihood.

EM: Coordinate Ascent on Lower Bound

(1) Start at $\theta^{\text {old }}$.
(2) Find q giving best lower bound at $\theta^{\text {old }} \Longrightarrow \mathcal{L}(q, \theta)$.
(0) $\theta^{\text {new }}=\arg ^{\max }{ }_{\theta} \mathcal{L}(q, \theta)$.

EM: Next Steps

- In EM algorithm, we need to repeatedly solve the following steps:
- $\arg \max _{q} \mathcal{L}(q, \theta)$, for a given θ, and
- $\arg \max _{\theta} \mathcal{L}(q, \theta)$, for a given q.
- We now give two re-expressions of $\operatorname{ELBO} \mathcal{L}(q, \theta)$ that make these easy to compute...

ELBO in Terms of KL Divergence and Entropy

- Let's investigate the lower bound:

$$
\begin{aligned}
\mathcal{L}(q, \theta) & =\sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) \\
& =\sum_{z} q(z) \log \left(\frac{p(z \mid x, \theta) p(x \mid \theta)}{q(z)}\right) \\
& =\sum_{z} q(z) \log \left(\frac{p(z \mid x, \theta)}{q(z)}\right)+\sum_{z} q(z) \log p(x \mid \theta) \\
& =-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\log p(x \mid \theta)
\end{aligned}
$$

- Amazing! We get back an equality for the marginal likelihood:

$$
\log p(x \mid \theta)=\mathcal{L}(q, \theta)+\operatorname{KL}[q(z), p(z \mid x, \theta)]
$$

Maximizing over q for fixed θ.

- Find q maximizing

$$
\mathcal{L}(q, \theta)=-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\underbrace{\log p(x \mid \theta)}_{\text {no } q \text { here }}
$$

- Recall $\operatorname{KL}(p \| q) \geqslant 0$, and $\operatorname{KL}(p \| p)=0$.
- Best q is $q^{*}(z)=p(z \mid x, \theta)$ and

$$
\mathcal{L}\left(q^{*}, \theta\right)=-\underbrace{\operatorname{KL}[p(z \mid x, \theta), p(z \mid x, \theta)]}_{=0}+\log p(x \mid \theta)
$$

- Summary:

$$
\log p(x \mid \theta)=\sup _{q} \mathcal{L}(q, \theta) \quad \forall \theta
$$

- For any θ, sup is attained at $q(z)=p(z \mid x, \theta)$.

Marginal Log-Likelihood IS the Supremum over Lower Bounds

David S. Rosenberg (New York University)

Maximum of ELBO is MLE

- Suppose we find a maximum of $\mathcal{L}(q, \theta)$ over all distributions q on z and all $\theta \in \Theta$:

$$
\mathcal{L}\left(q^{*}, \theta^{*}\right)=\sup _{\theta} \sup _{q} \mathcal{L}(q, \theta) .
$$

(where of course $q^{*}(z)=p\left(z \mid x, \theta^{*}\right)$.)

- Claim: θ^{*} is a maximizes $\log p(x \mid \theta)$.
- Proof: Trivial, since $\log p(x \mid \theta)=\sup _{q} \mathcal{L}(q, \theta)$.

Summary: Maximizing over q for fixed $\theta=\theta^{\text {old }}$.

- At given $\theta=\theta^{\text {old }}$, want to find q giving best lower bound.
- Answer is $q^{*}=p\left(z \mid x, \theta^{\text {old }}\right)$.
- This gives lower bound $\mathcal{L}\left(q^{*}, \theta\right)$ that is tight (equality) at $\theta^{\text {old }}$

$$
\log p\left(x \mid \theta^{\text {old }}\right)=\mathcal{L}\left(q^{*}, \theta^{\text {old }}\right) \quad\left(\text { tangent at } \theta^{\text {old }}\right) .
$$

- And elsewhere, of course, $\mathcal{L}\left(q^{*}, \theta\right)$ is just a lower bound:

$$
\log p(x \mid \theta) \geqslant \mathcal{L}\left(q^{*}, \theta\right) \quad \forall \theta
$$

Tight lower bound for any chosen θ

For $\theta^{\text {old }}$, take $q(z)=p\left(z \mid x, \theta^{\text {old }}\right)$. Then
(1) $\log p\left(x \mid \theta^{\text {old }}\right)=\mathcal{L}\left(q, \theta^{\text {old }}\right)$. [Lower bound is tight at $\theta^{\text {old }}$.]
(2) $\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta) \forall \theta$. [Global lower bound].

Maximizing over θ for fixed q

- Consider maximizing the lower bound $\mathcal{L}(q, \theta)$:

$$
\begin{aligned}
\mathcal{L}(q, \theta) & =\sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) \\
& =\underbrace{\sum_{z} q(z) \log p(x, z \mid \theta)}_{\mathbb{E}[\text { complete data log-likelihood] }}-\underbrace{\sum_{z} q(z) \log q(z)}_{\text {no } \theta \text { here }}
\end{aligned}
$$

- Maximizing $\mathcal{L}(q, \theta)$ equivalent to maximizing \mathbb{E} [complete data log-likelihood] (for fixed q).

General EM Algorithm

(1) Choose initial $\theta^{\text {old }}$.
(2) Expectation Step

- Let $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$. [q^{*} gives best lower bound at $\theta^{\text {old }}$]
- Let

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\underbrace{\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)}_{\text {expectation w.r.t. } z \sim q^{*}(z)}
$$

(3) Maximization Step

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

[Equivalent to maximizing expected complete log-likelihood.]
(c) Go to step 2 , until converged.

Does EM Work?

EM Gives Monotonically Increasing Likelihood: By Picture

From Bishop's Pattern recognition and machine learning, Figure 9.14.

EM Gives Monotonically Increasing Likelihood: By Math

(1) Start at $\theta^{\text {old }}$.
(2) Choose $q^{*}(z)=\arg \max _{q} \mathcal{L}\left(q, \theta^{\text {old }}\right)$. We've shown

$$
\log p\left(x \mid \theta^{\text {old }}\right)=\mathcal{L}\left(q^{*}, \theta^{\text {old }}\right)
$$

(3) Choose $\theta^{\text {new }}=\arg \max _{\theta} \mathcal{L}\left(q^{*}, \theta\right)$. So

$$
\mathcal{L}\left(q^{*}, \theta^{\text {new }}\right) \geqslant \mathcal{L}\left(q^{*}, \theta^{\text {old }}\right)
$$

Putting it together, we get

$$
\begin{array}{rlr}
\log p\left(x \mid \theta^{\text {new }}\right) & \geqslant \mathcal{L}\left(q^{*}, \theta^{\text {new }}\right) & \mathcal{L} \text { is a lower bound } \\
& \geqslant \mathcal{L}\left(q^{*}, \theta^{\text {old }}\right) & \text { By definition of } \theta^{\text {new }} \\
& =\log p\left(x \mid \theta^{\text {old }}\right) & \text { Bound is tight at } \theta^{\text {old }} .
\end{array}
$$

Convergence of EM

- Let θ_{n} be value of EM algorithm after n steps.
- Define "transition function" $M(\cdot)$ such that $\theta_{n+1}=M\left(\theta_{n}\right)$.
- Suppose log-likelihood function $\ell(\theta)=\log p(x \mid \theta)$ is differentiable.
- Let S be the set of stationary points of $\ell(\theta)$. (i.e. $\nabla_{\theta} \ell(\theta)=0$)

Theorem

Under mild regularity conditions ${ }^{a}$, for any starting point θ_{0},

- $\lim _{n \rightarrow \infty} \theta_{n}=\theta^{*}$ for some stationary point $\theta^{*} \in S$ and
- θ^{*} is a fixed point of the $E M$ algorithm, i.e. $M\left(\theta^{*}\right)=\theta^{*}$. Moreover,
- $\ell\left(\theta_{n}\right)$ strictly increases to $\ell\left(\theta^{*}\right)$ as $n \rightarrow \infty$, unless $\theta_{n} \equiv \theta^{*}$.

[^0]Variations on EM

EM Gives Us Two New Problems

- The "E" Step: Computing

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)
$$

- The " M " Step: Computing

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

- Either of these can be too hard to do in practice.

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta),
$$

find any $\theta^{\text {new }}$ for which

$$
J\left(\theta^{\text {new }}\right)>J\left(\theta^{\text {old }}\right) .
$$

- Can use a standard nonlinear optimization strategy
- e.g. take a gradient step on J.
- We still get monotonically increasing likelihood.

EM and More General Variational Methods

- Suppose " E " step is difficult:
- Hard to take expectation w.r.t. $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$.
- Solution: Restrict to distributions Q that are easy to work with.
- Lower bound now looser:

$$
q^{*}=\underset{q \in \mathcal{Q}}{\arg \min } \operatorname{KL}\left[q(z), p\left(z \mid x, \theta^{\text {old }}\right)\right]
$$

EM in Bayesian Setting

- Suppose we have a prior $p(\theta)$.
- Want to find MAP estimate: $\hat{\theta}_{\text {MAP }}=\arg \max _{\theta} p(\theta \mid x)$:

$$
\begin{aligned}
p(\theta \mid x) & =p(x \mid \theta) p(\theta) / p(x) \\
\log p(\theta \mid x) & =\log p(x \mid \theta)+\log p(\theta)-\log p(x)
\end{aligned}
$$

- Still can use our lower bound on $\log p(x, \theta)$.

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)
$$

- Maximization step becomes

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max }[J(\theta)+\log p(\theta)]
$$

- Homework: Convince yourself our lower bound is still tight at θ.

Summer Homework: Gaussian Mixture Model (Hints)

Homework: Derive EM for GMM from General EM Algorithm

- Subsequent slides may help set things up.
- Key skills:
- MLE for multivariate Gaussian distributions.
- Lagrange multipliers

Gaussian Mixture Model (k Components)

- GMM Parameters

$$
\begin{aligned}
\text { Cluster probabilities: } & \pi=\left(\pi_{1}, \ldots, \pi_{k}\right) \\
\text { Cluster means: } & \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \\
\text { Cluster covariance matrices: } & \Sigma=\left(\Sigma_{1}, \ldots \Sigma_{k}\right)
\end{aligned}
$$

- Let $\theta=(\pi, \mu, \Sigma)$.
- Marginal log-likelihood

$$
\log p(x \mid \theta)=\log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x \mid \mu_{z}, \Sigma_{z}\right)\right\}
$$

$q^{*}(z)$ are "Soft Assignments"

- Suppose we observe n points: $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n \times d}$.
- Let $z_{1}, \ldots, z_{n} \in\{1, \ldots, k\}$ be corresponding hidden variables.
- Optimal distribution q^{*} is:

$$
q^{*}(z)=p(z \mid x, \theta) .
$$

- Convenient to define the conditional distribution for z_{i} given x_{i} as

$$
\begin{aligned}
\gamma_{i}^{j} & :=p\left(z=j \mid x_{i}\right) \\
& =\frac{\pi_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}{\sum_{c=1}^{k} \pi_{c} \mathcal{N}\left(x_{i} \mid \mu_{c}, \Sigma_{c}\right)}
\end{aligned}
$$

Expectation Step

- The complete log-likelihood is

$$
\begin{aligned}
\log p(x, z \mid \theta) & =\sum_{i=1}^{n} \log \left[\pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right] \\
& =\sum_{i=1}^{n}(\log \pi_{z}+\underbrace{\log \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)}_{\text {simplifies nicely }})
\end{aligned}
$$

- Take the expected complete log-likelihood w.r.t. q^{*} :

$$
\begin{aligned}
J(\theta) & =\sum_{z} q^{*}(z) \log p(x, z \mid \theta) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{i}^{j}\left[\log \pi_{j}+\log \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)\right]
\end{aligned}
$$

Maximization Step

- Find θ^{*} maximizing $J(\theta)$:

$$
\begin{aligned}
\mu_{c}^{\text {new }} & =\frac{1}{n_{c}} \sum_{i=1}^{n} \gamma_{i}^{c} x_{i} \\
\Sigma_{c}^{\text {new }} & =\frac{1}{n_{c}} \sum_{i=1}^{n} \gamma_{i}^{c}\left(x_{i}-\mu_{\mathrm{MLE}}\right)\left(x_{i}-\mu_{\mathrm{MLE}}\right)^{T} \\
\pi_{c}^{\text {new }} & =\frac{n_{c}}{n}
\end{aligned}
$$

for each $c=1, \ldots, k$.

[^0]: ${ }^{\text {a }}$ For details, see "Parameter Convergence for EM and MM Algorithms" by Florin Vaida in Statistica Sinica (2005). http://www3.stat.sinica.edu.tw/statistica/oldpdf/a15n316.pdf

