EM Algorithm for Latent Variable Models

David S. Rosenberg

New York University

April 24, 2018
Latent Variable Models
General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved **hidden variables**.
- x consists of **observed variables**.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x, z | \theta)$$

Definition

A **latent variable model** is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.
Complete and Incomplete Data

- Suppose we observe some data \((x_1, \ldots, x_n)\).
- To simplify notation, take \(x\) to represent the entire dataset

\[x = (x_1, \ldots, x_n), \]

and \(z\) to represent the corresponding unobserved variables

\[z = (z_1, \ldots, z_n). \]

- An observation of \(x\) is called an **incomplete data set**.
- An observation \((x, z)\) is called a **complete data set**.
Our Objectives

- **Learning problem**: Given incomplete dataset \(x \), find MLE
 \[\hat{\theta} = \arg \max_{\theta} p(x | \theta). \]

- **Inference problem**: Given \(x \), find conditional distribution over \(z \):
 \[p(z | x, \theta). \]

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)
Log-Likelihood and Terminology

Note that

\[
\arg \max_{\theta} p(x \mid \theta) = \arg \max_{\theta} \left[\log p(x \mid \theta) \right].
\]

Often easier to work with this “log-likelihood”.

We often call \(p(x) \) the **marginal likelihood**, because it is \(p(x, z) \) with \(z \) “marginalized out”:

\[
p(x) = \sum_z p(x, z)
\]

We often call \(p(x, z) \) the **joint**. (for “joint distribution”)

Similarly, \(\log p(x) \) is the **marginal log-likelihood**.
EM Algorithm (and Variational Methods) – The Big Picture
Big Picture Idea

- Want to find θ by maximizing the likelihood of the observed data x:
 \[\hat{\theta} = \arg \max_{\theta \in \Theta} \log p(x | \theta) \]

- Unfortunately this may be hard to do directly.

- Approach: Generate a family of lower bounds on $\theta \mapsto \log p(x | \theta)$.

- For every $q \in Q$, we will have a lower bound:
 \[\log p(x | \theta) \geq \mathcal{L}_q(\theta) \quad \forall \theta \in \Theta \]

- We will try to find the maximum over all lower bounds:
 \[\hat{\theta} = \arg \max_{\theta \in \Theta} \left[\sup_{q \in \Omega} \mathcal{L}_q(\theta) \right] \]
The Marginal Log-Likelihood Function

$$\log p(x|\theta)$$
The Maximum Likelihood Estimator

\[\theta^* = \arg \max_{\theta} \log p(x|\theta) \]
Lower Bounds on Marginal Log-Likelihood

\[
\log p(x | \theta)
\]
Supremum over Lower Bounds is a Lower Bound

\[\log p(x | \theta) \]

\[\sup_{q \in \mathcal{Q}} \mathcal{L}_q(\theta) \]
Parameter Estimate: Max over all lower bounds

\[\hat{\Theta} = \arg\max_\Theta \left[\sup_q \mathcal{L}_q(\Theta) \right] \]
The Expected Complete Data Log-Likelihood

- Marginal log-likelihood is hard to optimize:
 \[
 \max_{\theta} \log p(x | \theta)
 \]

- Typically the complete data log-likelihood is easy to optimize:
 \[
 \max_{\theta} \log p(x, z | \theta)
 \]

- What if we had a distribution \(q(z) \) for the latent variables \(z \)?
The Expected Complete Data Log-Likelihood

- Suppose we have a distribution \(q(z) \) on latent variable \(z \).
- Then maximize the **expected complete data log-likelihood**:
 \[
 \max_\theta \sum_z q(z) \log p(x, z \mid \theta)
 \]
- If \(q \) puts lots of weight on actual \(z \), this could be a good approximation to MLE.
- EM assumes this maximization is relatively easy.
- (This is true for GMM.)
Math Prerequisites
Jensen’s Inequality

Theorem (Jensen’s Inequality)

If $f : \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, and x is a random variable, then

$$\mathbb{E} f(x) \geq f(\mathbb{E} x).$$

Moreover, if f is strictly convex, then equality implies that $x = \mathbb{E} x$ with probability 1 (i.e. x is a constant).

• e.g. $f(x) = x^2$ is convex. So $\mathbb{E} x^2 \geq (\mathbb{E} x)^2$. Thus

$$\text{Var}(x) = \mathbb{E} x^2 - (\mathbb{E} x)^2 \geq 0.$$
Kullback-Leibler Divergence

- Let $p(x)$ and $q(x)$ be probability mass functions (PMFs) on \mathcal{X}.
- How can we measure how “different” p and q are?

The Kullback-Leibler or “KL” Divergence is defined by

$$KL(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

(Assumes $q(x) = 0$ implies $p(x) = 0$.)

- Can also write this as

$$KL(p||q) = \mathbb{E}_{x \sim p} \log \frac{p(x)}{q(x)}.$$
Gibbs Inequality \(\text{KL}(p\|q) \geq 0 \) and \(\text{KL}(p\|p) = 0 \)

Theorem (Gibbs Inequality)

Let \(p(x) \) and \(q(x) \) be PMFs on \(X \). Then

\[
\text{KL}(p\|q) \geq 0,
\]

with equality iff \(p(x) = q(x) \) for all \(x \in X \).

- KL divergence measures the “distance” between distributions.

- Note:
 - KL divergence **not a metric**.
 - KL divergence is **not symmetric**.
Gibbs Inequality: Proof

\[
\text{KL}(p \| q) = \mathbb{E}_p \left[-\log \left(\frac{q(x)}{p(x)} \right) \right]
\geq -\log \left[\mathbb{E}_p \left(\frac{q(x)}{p(x)} \right) \right] \quad \text{(Jensen’s)}
\]

\[
= -\log \left[\sum_{\{x \mid p(x) > 0\}} p(x) \frac{q(x)}{p(x)} \right]
\]

\[
= -\log \left[\sum_{x \in \mathcal{X}} q(x) \right]
\]

\[
= -\log 1 = 0.
\]

- Since \(-\log\) is strictly convex, we have strict equality iff \(q(x)/p(x)\) is a constant, which implies \(q = p\).
The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$
Lower Bound for Marginal Log-Likelihood

Let \(q(z) \) be any PMF on \(\mathcal{Z} \), the support of \(z \):

\[
\log p(x | \theta) = \log \left[\sum_z p(x, z | \theta) \right]
\]

\[
= \log \left[\sum_z q(z) \left(\frac{p(x, z | \theta)}{q(z)} \right) \right] \quad \text{(log of an expectation)}
\]

\[
\geq \sum_z q(z) \log \left(\frac{p(x, z | \theta)}{q(z)} \right) \quad \text{(expectation of log)}
\]

\(\mathcal{L}(q, \theta) \)

Inequality is by Jensen’s, by concavity of the log.

This inequality is the basis for “variational methods”, of which EM is a basic example.
The ELBO

- For any PMF \(q(z) \), we have a lower bound on the marginal log-likelihood

\[
\log p(x | \theta) \geq \sum_z q(z) \log \left(\frac{p(x, z | \theta)}{q(z)} \right) \equiv \mathcal{L}(q, \theta)
\]

- Marginal log likelihood \(\log p(x | \theta) \) also called the evidence.

- \(\mathcal{L}(q, \theta) \) is the evidence lower bound, or “ELBO”.

In EM algorithm (and variational methods more generally), we maximize \(\mathcal{L}(q, \theta) \) over \(q \) and \(\theta \).
MLE, EM, and the ELBO

- For any PMF $q(z)$, we have a lower bound on the marginal log-likelihood

$$\log p(x | \theta) \geq \mathcal{L}(q, \theta).$$

- The MLE is defined as a maximum over θ:

$$\hat{\theta}_{\text{MLE}} = \arg \max_\theta \left[\log p(x | \theta) \right].$$

- In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

$$\hat{\theta}_{\text{EM}} \approx \arg \max_\theta \left[\max_q \mathcal{L}(q, \theta) \right].$$

- In EM algorithm, q ranges over all distributions on z.
A Family of Lower Bounds

- For each q, we get a lower bound function: $\log p(x \mid \theta) \geq \mathcal{L}(q, \theta) \forall \theta$.
- Two lower bounds (blue and green curves), as functions of θ:

![Graph showing two lower bounds](image)

- Ideally, we’d find the maximum of the red curve. Maximum of green is close.

From Bishop’s *Pattern recognition and machine learning*, Figure 9.14.
Choose sequence of q’s and θ’s by “coordinate ascent” on $\mathcal{L}(q, \theta)$.

EM Algorithm (high level):

1. Choose initial θ^{old}.
2. Let $q^* = \arg \max_q \mathcal{L}(q, \theta^{\text{old}})$
3. Let $\theta^{\text{new}} = \arg \max_{\theta} \mathcal{L}(q^*, \theta^{\text{old}})$.
4. Go to step 2, until converged.

Will show: $p(x | \theta^{\text{new}}) \geq p(x | \theta^{\text{old}})$

Get sequence of θ’s with monotonically increasing likelihood.
EM: Coordinate Ascent on Lower Bound

1. Start at θ^{old}.
2. Find q giving best lower bound at $\theta^{\text{old}} \Rightarrow \mathcal{L}(q, \theta)$.
3. $\theta^{\text{new}} = \arg\max_{\theta} \mathcal{L}(q, \theta)$.

From Bishop’s *Pattern recognition and machine learning*, Figure 9.14.
In EM algorithm, we need to repeatedly solve the following steps:
- \(\arg \max_q \mathcal{L}(q, \theta) \), for a given \(\theta \), and
- \(\arg \max_\theta \mathcal{L}(q, \theta) \), for a given \(q \).

We now give two re-expressions of ELBO \(\mathcal{L}(q, \theta) \) that make these easy to compute...
ELBO in Terms of KL Divergence and Entropy

Let’s investigate the lower bound:

\[
\mathcal{L}(q, \theta) = \sum_z q(z) \log \left(\frac{p(x, z | \theta)}{q(z)} \right)
\]

\[
= \sum_z q(z) \log \left(\frac{p(z | x, \theta) p(x | \theta)}{q(z)} \right)
\]

\[
= \sum_z q(z) \log \left(\frac{p(z | x, \theta)}{q(z)} \right) + \sum_z q(z) \log p(x | \theta)
\]

\[
= -KL[q(z), p(z | x, \theta)] + \log p(x | \theta)
\]

Amazing! We get back an equality for the marginal likelihood:

\[
\log p(x | \theta) = \mathcal{L}(q, \theta) + KL[q(z), p(z | x, \theta)]
\]
Maximizing over \(q \) for fixed \(\theta \).

- Find \(q \) maximizing
 \[
 \mathcal{L}(q, \theta) = - \text{KL}[q(z), p(z \mid x, \theta)] + \log p(x \mid \theta)
 \]

- Recall \(\text{KL}(p\|q) \geq 0 \), and \(\text{KL}(p\|p) = 0 \).
- Best \(q \) is \(q^*(z) = p(z \mid x, \theta) \) and
 \[
 \mathcal{L}(q^*, \theta) = - \text{KL}[p(z \mid x, \theta), p(z \mid x, \theta)] + \log p(x \mid \theta)
 \]
 \[
 = 0
 \]

- Summary:
 \[
 \log p(x \mid \theta) = \sup_q \mathcal{L}(q, \theta) \quad \forall \theta
 \]

- For any \(\theta \), \(\sup \) is attained at \(q(z) = p(z \mid x, \theta) \).
Marginal Log-Likelihood IS the Supremum over Lower Bounds

\[\log p(x | \theta) = \sup_{q} \mathcal{L}(q, \theta) \]
Suppose we find a maximum of $\mathcal{L}(q, \theta)$ over all distributions q on z and all $\theta \in \Theta$:

$$\mathcal{L}(q^*, \theta^*) = \sup_{\theta} \sup_{q} \mathcal{L}(q, \theta).$$

(where of course $q^*(z) = p(z \mid x, \theta^*)$.)

Claim: θ^* is a maximizes $\log p(x \mid \theta)$.

Proof: Trivial, since $\log p(x \mid \theta) = \sup_{q} \mathcal{L}(q, \theta)$.
Summary: Maximizing over q for fixed $\theta = \theta^{\text{old}}$.

- At given $\theta = \theta^{\text{old}}$, want to find q giving best lower bound.
- Answer is $q^* = p(z \mid x, \theta^{\text{old}})$.
- This gives lower bound $\mathcal{L}(q^*, \theta)$ that is tight (equality) at θ^{old}
 \[
 \log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q^*, \theta^{\text{old}}) \quad \text{(tangent at } \theta^{\text{old}}).
 \]
- And elsewhere, of course, $\mathcal{L}(q^*, \theta)$ is just a lower bound:
 \[
 \log p(x \mid \theta) \geq \mathcal{L}(q^*, \theta) \quad \forall \theta
 \]
Tight lower bound for any chosen θ

For θ^{old}, take $q(z) = p(z \mid x, \theta^{\text{old}})$. Then

1. $\log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q, \theta^{\text{old}})$. [Lower bound is tight at θ^{old}.]
2. $\log p(x \mid \theta) \geq \mathcal{L}(q, \theta)$ $\forall \theta$. [Global lower bound].

From Bishop’s *Pattern recognition and machine learning*, Figure 9.14.
Consider maximizing the lower bound $\mathcal{L}(q, \theta)$:

$$
\mathcal{L}(q, \theta) = \sum_z q(z) \log \left(\frac{p(x, z | \theta)}{q(z)} \right)
= \sum_z q(z) \log p(x, z | \theta) - \sum_z q(z) \log q(z)
$$

\[= \mathbb{E}[^{\text{complete data log-likelihood}}] - \text{no } \theta \text{ here}\]

Maximizing $\mathcal{L}(q, \theta)$ equivalent to maximizing $\mathbb{E}[\text{complete data log-likelihood}]$ (for fixed q).
1. Choose initial θ^{old}.

2. **Expectation Step**
 - Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. [$q^*$ gives best lower bound at θ^{old}]
 - Let
 \[
 J(\theta) := \mathcal{L}(q^*, \theta) = \sum_z q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)
 \]
 \[\text{expectation w.r.t. } z \sim q^*(z)\]

3. **Maximization Step**
 \[\theta^{\text{new}} = \arg \max_{\theta} J(\theta).\]
 [Equivalent to maximizing expected complete log-likelihood.]

4. Go to step 2, until converged.
Does EM Work?
EM Gives Monotonically Increasing Likelihood: By Picture

From Bishop’s *Pattern recognition and machine learning*, Figure 9.14.
EM Gives Monotonically Increasing Likelihood: By Math

1. Start at θ^{old}.
2. Choose $q^*(z) = \arg \max_q \mathcal{L}(q, \theta^{\text{old}})$. We’ve shown

 $$\log p(x | \theta^{\text{old}}) = \mathcal{L}(q^*, \theta^{\text{old}})$$

3. Choose $\theta^{\text{new}} = \arg \max_\theta \mathcal{L}(q^*, \theta)$. So

 $$\mathcal{L}(q^*, \theta^{\text{new}}) \geq \mathcal{L}(q^*, \theta^{\text{old}}).$$

Putting it together, we get

$$\log p(x | \theta^{\text{new}}) \geq \mathcal{L}(q^*, \theta^{\text{new}}) \quad \mathcal{L} \text{ is a lower bound}$$

$$\geq \mathcal{L}(q^*, \theta^{\text{old}}) \quad \text{By definition of } \theta^{\text{new}}$$

$$= \log p(x | \theta^{\text{old}}) \quad \text{Bound is tight at } \theta^{\text{old}}.$$
Convergence of EM

- Let θ_n be value of EM algorithm after n steps.
- Define “transition function” $M(\cdot)$ such that $\theta_{n+1} = M(\theta_n)$.
- Suppose log-likelihood function $\ell(\theta) = \log p(x | \theta)$ is differentiable.
- Let S be the set of stationary points of $\ell(\theta)$. (i.e. $\nabla_\theta \ell(\theta) = 0$)

Theorem

Under mild regularity conditions, for any starting point θ_0,

- $\lim_{n \to \infty} \theta_n = \theta^*$ for some stationary point $\theta^* \in S$ and
- θ^* is a fixed point of the EM algorithm, i.e. $M(\theta^*) = \theta^*$. Moreover,
- $\ell(\theta_n)$ strictly increases to $\ell(\theta^*)$ as $n \to \infty$, unless $\theta_n \equiv \theta^*$.

Variations on EM
EM Gives Us Two New Problems

- The “E” Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_z q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

- The “M” Step: Computing

$$\theta^{\text{new}} = \arg \max_\theta J(\theta).$$

- Either of these can be too hard to do in practice.
Generalized EM (GEM)

- Addresses the problem of a difficult “M” step.
- Rather than finding
 \[\theta^{\text{new}} = \arg \max_{\theta} J(\theta), \]
 find any \(\theta^{\text{new}} \) for which
 \[J(\theta^{\text{new}}) > J(\theta^{\text{old}}). \]
- Can use a standard nonlinear optimization strategy
 - e.g. take a gradient step on \(J \).
- We still get monotonically increasing likelihood.
Suppose “E” step is difficult:
- Hard to take expectation w.r.t. $q^*(z) = p(z \mid x, \theta^{old})$.

Solution: Restrict to distributions Q that are easy to work with.

Lower bound now looser:

$$q^* = \arg\min_{q \in Q} KL[q(z), p(z \mid x, \theta^{old})]$$
EM in Bayesian Setting

- Suppose we have a prior \(p(\theta) \).
- Want to find MAP estimate: \(\hat{\theta}_{\text{MAP}} = \arg \max_\theta p(\theta \mid x) \):

\[
p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)}
\]

\[
\log p(\theta \mid x) = \log p(x \mid \theta) + \log p(\theta) - \log p(x)
\]

- Still can use our lower bound on \(\log p(x, \theta) \).

\[
J(\theta) := \mathcal{L}(q^*, \theta) = \sum_z q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)
\]

- Maximization step becomes

\[
\theta^{\text{new}} = \arg \max_\theta \left[J(\theta) + \log p(\theta) \right]
\]

- Homework: Convince yourself our lower bound is still tight at \(\theta \).
Summer Homework: Gaussian Mixture Model (Hints)
Homework: Derive EM for GMM from General EM Algorithm

- Subsequent slides may help set things up.
- Key skills:
 - MLE for multivariate Gaussian distributions.
 - Lagrange multipliers
Gaussian Mixture Model \((k \text{ Components})\)

- **GMM Parameters**

 Cluster probabilities: \(\pi = (\pi_1, \ldots, \pi_k)\)

 Cluster means: \(\mu = (\mu_1, \ldots, \mu_k)\)

 Cluster covariance matrices: \(\Sigma = (\Sigma_1, \ldots, \Sigma_k)\)

- Let \(\theta = (\pi, \mu, \Sigma)\).

- **Marginal log-likelihood**

 \[
 \log p(x | \theta) = \log \left\{ \sum_{z=1}^{k} \pi_z \mathcal{N}(x | \mu_z, \Sigma_z) \right\}
 \]
$q^*(z)$ are “Soft Assignments”

- Suppose we observe n points: $X = (x_1, \ldots, x_n) \in \mathbb{R}^{n \times d}$.

- Let $z_1, \ldots, z_n \in \{1, \ldots, k\}$ be corresponding hidden variables.

- Optimal distribution q^* is:

$$q^*(z) = p(z | x, \theta).$$

- Convenient to define the conditional distribution for z_i given x_i as

$$\gamma^j_i := p(z = j | x_i) = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{c=1}^{k} \pi_c \mathcal{N}(x_i | \mu_c, \Sigma_c)}$$
Expectation Step

- The complete log-likelihood is

\[
\log p(x, z \mid \theta) = \sum_{i=1}^{n} \log \left[\pi_z \mathcal{N}(x_i \mid \mu_z, \Sigma_z) \right]
\]

simplifies nicely

- Take the expected complete log-likelihood w.r.t. \(q^* \):

\[
J(\theta) = \sum_z q^*(z) \log p(x, z \mid \theta)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_i^j \left[\log \pi_j + \log \mathcal{N}(x_i \mid \mu_j, \Sigma_j) \right]
\]
Maximization Step

- Find θ^* maximizing $J(\theta)$:

\[
\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^{n} \gamma_{i}^{c} x_i
\]

\[
\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^{n} \gamma_{i}^{c} (x_i - \mu_{\text{MLE}}) (x_i - \mu_{\text{MLE}})^T
\]

\[
\pi_c^{\text{new}} = \frac{n_c}{n}
\]

for each $c = 1, \ldots, k$.