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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Lab 1: Gradients and Directional Derivatives

Multivariate Differentiation

Learning Objectives

1. Define the directional derivative, and use it to find a linear approximation to f(x+hu).

2. Define partial derivative and the gradient. Show how to compute an arbitrary direc-
tional derivative using the gradient.

3. For a differentiable function, give a linear approximation near a point x using the
gradient.

4. Show that the gradient gives the direction of steepest ascent, and the negative gradient
gives the direction of steepest descent.
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Concept Check Questions

1. If f ′(x;u) < 0 show that f(x+ hu) < f(x) for sufficiently small h > 0.

Solution. The directional derivative is given by

f ′(x;u) = lim
h→0

f(x+ hu)− f(x)

h
< 0.

By the definition of a limit, there must be a δ > 0 such that

f(x+ hu)− f(x)

h
< 0

whenever |h| < δ. If we restrict 0 < h < δ then we have

f(x+ hu)− f(x) < 0 =⇒ f(x+ hu) < f(x)

as required.

2. Let f : Rn → R be differentiable, and assume that ∇f(x) 6= 0. Prove

arg max
‖u‖2=1

f ′(x;u) =
∇f(x)

‖∇f(x)‖2
and arg min

‖u‖2=1

f ′(x;u) = − ∇f(x)

‖∇f(x)‖2
.

Solution. By Cauchy-Schwarz we have, for ‖u‖2 = 1,

|f ′(x;u)| = |∇f(x)Tu| ≤ ‖∇f(x)‖2‖u‖2 = ‖∇f(x)‖2.

Note that

∇f(x)T
∇f(x)

‖∇f(x)‖2
= ‖∇f(x)‖2 and ∇f(x)T

−∇f(x)

‖∇f(x)‖2
= −‖∇f(x)‖2,

so these achieve the maximum and minimum bounds given by Cauchy-Schwarz.

One way to understand the Cauchy-Schwarz inequality is to recall that the dot-product
between two vectors v, w ∈ Rd can be written as

vTw = ‖v‖2‖w‖2 cos(θ),

where θ is the angle between v and w. This value is maximized at cos(0) = 1 and
minimized at cos(π) = −1.

Computing Gradients

Learning Objectives

1. Find the gradient of a function by computing each partial derivative separately.

2. Use the chain rule to perform gradient computations.

3. Compute the gradient of a differentiable function by determining the form of a general
directional derivative.
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Concept Check Questions

1. Let f : R2 → R be given by f(x, y) = x2 + 4xy+ 3y2. Compute the gradient ∇f(x, y).

Solution. Computing the partial derivatives gives

∂1f(x, y) = 2x+ 4y and ∂2f(x, y) = 4x+ 6y.

Thus the gradient is given by

∇f(x, y) =

(
2x+ 4y
4x+ 6y

)
.

2. Compute the gradient of f : Rn → R where f(x) = xTAx and A ∈ Rn×n is any matrix.

Solution. Here we show two methods. In either case we can obtain differentiability by
noticing the partial derivatives are continuous.

(a) Since

f(x) = xTAx =
n∑

i,j=1

aijxixj

we have

∂kf(x) =
n∑

j=1

(akj + ajk)xj

so
∇f(x) = (A+ AT )x.

(b) Note that

f(x+ tv) = (x+ tv)TA(x+ tv)
= xTAx+ txTAv + tvTAx+ t2vTAv
= f(x) + t(xTA+ xTAT )v + t2(vTAv).

Thus

f ′(x; v) = lim
t→0

f(x+ tv)− f(x)

t
= lim

t→0
(xTA+xTAT )v+t(vTAv) = (xTA+xTAT )v.

This shows
∇f(x) = (A+ AT )x.

3. Compute the gradient of the quadratic function f : Rn → R given by

f(x) = b+ cTx+ xTAx,

where b ∈ R, c ∈ Rn and A ∈ Rn×n.
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Solution. First consider the linear function g(x) = cTx. Note that

g(x+ tv) = cT (x+ tv) = cTx+ tcTv =⇒ ∇f(x) = c.

As the derivative is linear we can combine this with the previous problem to obtain

∇f(x) = c+ (A+ AT )x.

4. Fix s ∈ Rn and consider f(x) = (x − s)TA(x − s) where A ∈ Rn×n. Compute the
gradient of f .

Solution. We give two methods.

(a) Let g(x) = xTAx and h(x) = x− s so that f(x) = g(h(x)). By the vector-valued
form of the chain rule we have

∇f(x) = ∇g(h(x))TDh(x) = (A+ AT )(x− s),

where Dh(x) = In×n is the Jacobian matrix of h.

(b) We have
(x− s)TA(x− s) = xTAx− sT (A+ AT )x+ sTAs.

Computing the gradient gives

∇f(x) = (A+ AT )x− (A+ AT )s = (A+ AT )(x− s).

5. Consider the ridge regression objective function

f(w) = ‖Aw − y‖22 + λ‖w‖22,

where w ∈ Rn, A ∈ Rm×n, y ∈ Rm, and λ ∈ R≥0.

(a) Compute the gradient of f .

(b) Express f in the form f(w) = ‖Bw − z‖22 for some choice of B, z. What do you
notice about B?

(c) Using either of the parts above, compute

arg min
w∈Rn

f(w).

Solution.

(a) We can express f(w) as

f(w) = (Aw − y)T (Aw − y) + λwTw = wTATAw − 2yTAw + yTy + λwTw.

Applying our previous results gives (noting wTw = wT In×nw)

∇f(w) = 2ATAw − 2ATy + 2λw = 2(ATA+ λIn×n)w − 2ATy.
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(b) Let

B =

(
A√
λIn×n

)
and z =

(
y

0n×1

)
written in block-matrix form. Note B is full rank.

(c) The argmin is w = (ATA+λIn×n)−1ATy. The inverse is valid since B is full rank
as noted above.

6. Compute the gradient of

f(θ) = λ‖θ‖22 +
n∑

i=1

log(1 + exp(−yiθTxi)),

where yi ∈ R and θ ∈ Rm and xi ∈ Rm for i = 1, . . . , n.

Solution. As the derivative is linear, we can compute the gradient of each term sepa-
rately and obtain

∇f(θ) = 2λθ −
n∑

i=1

exp(−yiθTxi)
1 + exp(−yiθTxi)

yixi,

where we used the techniques from Recitation 1 to differentiate the log terms.
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