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Administrative

Administrative Info

@ Make sure you are signed up for the Spring 2019 instance of the class
on Piazza. The link is on the class webpage (link is fixed now).

@ All students must submit the first homework on Gradescope using an
access code available on Piazza.

@ Students on the waiting list expecting to enroll must also submit the
first homework on Gradescope using the access code on Piazza.
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Initial Question
Intro Question

Question

We are given the data set (x1,¥1),...,(Xn, ¥n) where x; € R and y; € R.
We want to fit a linear function to this data by performing empirical risk
minimization. More precisely, we are using the hypothesis space

F = {hg(x) = 01x + 62 | 6 € R?} and the loss function £(a,y) = (a — y)>.
Given an initial guess 6 for the empirical risk minimizing parameter vector,
how could we improve our guess?
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Recitation 1 Initial Question

Intro Solution

Solution
@ The empirical risk is given by
J(@) = R (h ) = 1 if(@lx + 6> y-) = l i(@lx + 6y — y')2
n\"19 n i y Yi n < i i

i=1
1
= SIxo-yl3,

where X € R"*? is the matrix whose ith row is given by (x;,1).

e Can improve a non-optimal guess @ by taking a small step in the
direction of the negative gradient —VJ(0).
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Iial Question
Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Iial Question
Negative Gradient Steps
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Single Variable Calculus
Single Variable Differentiation

@ Calculus lets us turn non-linear problems into linear algebra.

o For f : R — R differentiable, the derivative is given by

f(x+ h)—f(x)
P .

f'(x)=li
(x) Pkl

@ Can also be written as
f(x + h) = f(x) + hf'(x) + o(h) as h—0,

where o(h) denotes a function g(h) with g(h)/h — 0 as h — 0.
@ Points with f'(x) = 0 are called critical points.

Brett Bernstein (CDS at NYU) Recitation 1 April 18, 2019

16 /37



SV e
1D Linear Approximation By Derivative

(x+h, f(x+h))

fl@+h) = (F(@) + hf'(2))

(@ +h, f(x) + hf'(z))

(z, f(x))
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Recitation 1 Multivariable Calculus

Multivariable Differentiation

@ Consider now a function f : R” — R with inputs of the form
x=(x1,...,xn)" € R",

@ Unlike the 1-dimensional case, we cannot assign a single number to
the slope at a point since there are many directions we can move in.
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Multivariable Calculus

Recitation 1

Multiple Possible Directions for f : R> — R
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Recitation 1 Multivariable Calculus

Multivariable Differentiation

© We will look at two (related) methods for understanding multivariable
differentiation:

@ Directional Derivatives: Derivative computed along a single direction
@ Gradient: Gives multidimensional linear approximation and the steepest
ascent direction
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Multivariable Calculus
Directional Derivative

Definition

Let f : R” — R. The directional derivative f'(x; u) of f at x € R" in the
direction u € R" is given by

F(x: 1) = ,[ijjo f(x+ht;7) - f(x).

e By fixing a direction u we turned our multidimensional problem into a
1-dimensional problem.

@ Similar to 1-d we have
f(x + hu) = f(x) + hf'(x; u) + o(h).

e We say that u is a descent direction of f at x if f'(x; u) < 0.

o Taking a small enough step in a descent direction causes the function
value decreases.
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Directional Derivative as a Slope of a Slice
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Recitation 1 Multivariable Calculus

Partial Derivative

i-1
e Let ¢ =(0,0,...,0,1,0,...,0) denote the jth standard basis vector.
@ The ith partial derivative is defined to be the directional derivative
along e;.
@ It can be written many ways:

f'(x; &) = aax,-f(x) = 05 f(x) = 0if(x).

@ What is the intuitive meaning of dy,f(x)? For example, what does a
large value of Oy, f(x) imply?
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Multivariable Calculus
Differentiability and Gradients

e We say a function f : R” — R is differentiable at x € R" if

v — ) —gTy
v—0 lv||2

=0,

for some g € R".

o If it exists, this g is unique and is called the gradient of f at x with

notation
g = VIf(x).
@ It can be shown that
O f(x)
Vi(x) = :
axnf(x)
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Recitation 1 Multivariable Calculus

Useful Convention

o Consider f : RPT9 — R,

@ Split the input x € RPT9 into parts w € RP and z € RY so
that x = (w, z).

@ Define the partial gradients

Ow f(w, 2) 9., F(w, 2)

Vuf(w,z) = : and V,f(w,z):= :
6Wpf(w, z) 8qu(w, z)
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Recitation 1 Multivariable Calculus

Linear Approximation and Tangent Plane

Gradient gives us a linear approximation of f near the point x:

f(x +v) =~ f(x) + VF(x)Tv.

Analogous to the 1-d case we can express differentiability as

f(x+v)="Ff(x)+ Vf(X)Tv + o(||lv||2)-

The gradient approximation can be seen as a tangent plane given by
P={(x+v,f(x)+VFf(x)"v)|veR"} CR"™,

@ Methods like gradient descent approximate a function locally by its
tangent plane, and then take a step accordingly.
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T E A
Tangent Plane for f : R> = R
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Recitation 1 Multivariable Calculus

Directional Derivatives from Gradients

If f is differentiable we obtain a formula for any directional derivative
in terms of the gradient

f'(x;u) = VF(x) .

This implies that a direction is a descent direction if and only if it
makes an acute angle with the negative gradient.

If Vf(x) # 0 applying Cauchy-Schwarz gives
V£(x) . Vif(x)
argmaxf’ x;u)=-——-<— and argminf'(x;u) = ———-—.
e max 0 0) = e, e min £ NOIE

The gradient points in the direction of steepest ascent.

The negative gradient points in the direction of steepest descent.
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Multivariable Calculus
Critical Points

@ Analogous to 1-d, if f : R” — R is differentiable and x is a local
extremum then we must have Vf(x) = 0.

e Points with Vf(x) = 0 are called critical points.

@ Later in the course we will see that for a convex differentiable
function, x is a critical point if and only if it is a global minimizer.
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Multivariable Calculus
Critical Points of f : R2 - R

minimum

saddle
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RS ET e
Recap

@ To find a good decision function we will minimize the empirical loss
on the training data.

@ Having fixed a hypothesis space parameterized by 6, finding a good
decision function means finding a good 6.

@ Given a current guess for 8, we will use the gradient of the empirical
loss (w.r.t. 8) to get a local linear approximation.

o If the gradient is non-zero, taking a small step in the direction of the
negative gradient is guaranteed to decrease the empirical loss.

@ This motivates the minimization algorithm called gradient descent.
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SnedC s
Computing Gradients

Question
For questions 1 and 2, compute the gradient of the given function.
@ J:R3 = Ris given by

J(61, 02, 03) = log(1 + ef1+202+303)
Q@ J:R" — Ris given by
J(O) = X0 —yl5 = (X0—y) (X0 —y) =0T XTX0 -2y " X0 +y "y,

for some X € R™*" and y € R™.

© Assume X in the previous question has full column rank. What is the
critical point of J?
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Computing Gradients
J(01,0,,03) = log(1 + e"172%273%) Solution 1

We can compute the partial derivatives directly:

1120243063

00, J(01,02,03) = 11 01 t20,+305

2ef1+262+3063

00,J(01,02,03) = 11 01 t20,+305

30112021303

09,J(01,02,03) = 11 et +20,+305

and obtain
et 12624303
1 + 691+292+393

01+20,+36
VJ(01,0,,05) = | 2T
1 + 691+292+393

3011+202+303
1 + 691 +26,+363
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Computing Gradients
J(01,02,03) = log(1 + e¥1202+3%) Solution 2

@ Spot the linear algebra!
o Let w=(1,2,3)".
o Write J(6) = log(1 + e*'?).

@ Apply a version of the chain rule (twice):

-
ew0

Theorem (Chain Rule)
Ifg:R—Randh:R"— R are differentiable then

V(g o h)(x) = g'(h(x))Vh(x).
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Computing Gradients
J(0) = || X0 — y||5 Solution

@ We could use techniques similar to the previous problem, but instead
we show a different method using directional derivatives.

@ For arbitrary t € R and 6, v € R" we have

J(O+ tv)
= O+t)TXTXO+tv)=2yTX(@O+tv)+yTy
= 0TX"TXO+t2vTXTXv +2t0T X" Xv —2yTXO0 — 2ty " Xv + y Ty
= JO)+t(20TXTX =2y TX)v 4+ t2vT X T Xv. -

@ This gives

70:v) = tim 2O =IO) oy Tx oy Tx)y = vi(0)Tv
t—0 t
o Thus VJ(0) = 2(XTX0 — XTy) =2XT(X0 —y).
e Data science interpretation of VJ(6) (assuming columns of X are
centered)?
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Computing Gradients
Critical Points of J(0) = || X0 — y||3

Need VJ(0) =2XT X0 —2XTy = 0.

Since X is assumed to have full column rank, we see that X7 X is
invertible.

Thus we have 6 = (XTX)71XTy.

As we will see later, this function is strictly convex (Hessian
V2J(0) = 2X T X is positive definite).

@ Thus we have found the unique minimizer (least squares solution).
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Computing Gradients
Technical Aside: Differentiability

@ When computing the gradients above we assumed the functions were
differentiable.

@ Can use the following theorem to be completely rigorous.

Theorem

Let f: R" — R and suppose 0;f : R" — R is continuous for i = 1,..., n.
Then f is differentiable.
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