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Administrative

Administrative Info

Make sure you are signed up for the Spring 2019 instance of the class
on Piazza. The link is on the class webpage (link is fixed now).

All students must submit the first homework on Gradescope using an
access code available on Piazza.

Students on the waiting list expecting to enroll must also submit the
first homework on Gradescope using the access code on Piazza.
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Recitation 1 Initial Question

Intro Question

Question

We are given the data set (x1, y1), . . . , (xn, yn) where xi ∈ R and yi ∈ R.
We want to fit a linear function to this data by performing empirical risk
minimization. More precisely, we are using the hypothesis space
F = {hθ(x) = θ1x + θ2 | θ ∈ R2} and the loss function `(a, y) = (a− y)2.
Given an initial guess θ̃ for the empirical risk minimizing parameter vector,
how could we improve our guess?

y

x

Brett Bernstein (CDS at NYU) Recitation 1 April 18, 2019 3 / 37



Recitation 1 Initial Question

Intro Solution

Solution

The empirical risk is given by

J(θ) := R̂n(hθ) =
1

n

n∑
i=1

`(θ1xi + θ2, yi ) =
1

n

n∑
i=1

(θ1xi + θ2 − yi )
2

=
1

n
‖Xθ − y‖22,

where X ∈ Rn×2 is the matrix whose ith row is given by (xi , 1).

Can improve a non-optimal guess θ̃ by taking a small step in the
direction of the negative gradient −∇J(θ).
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Recitation 1 Initial Question

Negative Gradient Steps
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Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Initial Question

Negative Gradient Steps
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Recitation 1 Single Variable Calculus

Single Variable Differentiation

Calculus lets us turn non-linear problems into linear algebra.

For f : R→ R differentiable, the derivative is given by

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

Can also be written as

f (x + h) = f (x) + hf ′(x) + o(h) as h→ 0,

where o(h) denotes a function g(h) with g(h)/h→ 0 as h→ 0.

Points with f ′(x) = 0 are called critical points.
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Recitation 1 Single Variable Calculus

1D Linear Approximation By Derivative

f(x+ h)− (f(x) + hf ′(x))

(x, f(x))

f

(x+ h, f(x+ h))

(x+ h, f(x) + hf ′(x))
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Recitation 1 Multivariable Calculus

Multivariable Differentiation

Consider now a function f : Rn → R with inputs of the form
x = (x1, . . . , xn)T ∈ Rn.

Unlike the 1-dimensional case, we cannot assign a single number to
the slope at a point since there are many directions we can move in.
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Recitation 1 Multivariable Calculus

Multiple Possible Directions for f : R2 → R
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Recitation 1 Multivariable Calculus

Multivariable Differentiation

1 We will look at two (related) methods for understanding multivariable
differentiation:

1 Directional Derivatives: Derivative computed along a single direction
2 Gradient: Gives multidimensional linear approximation and the steepest

ascent direction
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Recitation 1 Multivariable Calculus

Directional Derivative

Definition

Let f : Rn → R. The directional derivative f ′(x ; u) of f at x ∈ Rn in the
direction u ∈ Rn is given by

f ′(x ; u) = lim
h→0

f (x + hu)− f (x)

h
.

By fixing a direction u we turned our multidimensional problem into a
1-dimensional problem.

Similar to 1-d we have

f (x + hu) = f (x) + hf ′(x ; u) + o(h).

We say that u is a descent direction of f at x if f ′(x ; u) < 0.

Taking a small enough step in a descent direction causes the function
value decreases.
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Recitation 1 Multivariable Calculus

Directional Derivative as a Slope of a Slice
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Recitation 1 Multivariable Calculus

Partial Derivative

Let ei = (

i−1︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, . . . , 0) denote the ith standard basis vector.

The ith partial derivative is defined to be the directional derivative
along ei .

It can be written many ways:

f ′(x ; ei ) =
∂

∂xi
f (x) = ∂xi f (x) = ∂i f (x).

What is the intuitive meaning of ∂xi f (x)? For example, what does a
large value of ∂x3f (x) imply?
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Recitation 1 Multivariable Calculus

Differentiability and Gradients

We say a function f : Rn → R is differentiable at x ∈ Rn if

lim
v→0

f (x + v)− f (x)− gT v

‖v‖2
= 0,

for some g ∈ Rn.

If it exists, this g is unique and is called the gradient of f at x with
notation

g = ∇f (x).

It can be shown that

∇f (x) =

 ∂x1f (x)
...

∂xn f (x)

 .
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Recitation 1 Multivariable Calculus

Useful Convention

Consider f : Rp+q → R.

Split the input x ∈ Rp+q into parts w ∈ Rp and z ∈ Rq so
that x = (w , z).

Define the partial gradients

∇w f (w , z) :=

 ∂w1f (w , z)
...

∂wp f (w , z)

 and ∇z f (w , z) :=

 ∂z1f (w , z)
...

∂zq f (w , z)

 .
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Recitation 1 Multivariable Calculus

Linear Approximation and Tangent Plane

Gradient gives us a linear approximation of f near the point x :

f (x + v) ≈ f (x) +∇f (x)T v .

Analogous to the 1-d case we can express differentiability as

f (x + v) = f (x) +∇f (x)T v + o(‖v‖2).

The gradient approximation can be seen as a tangent plane given by

P = {(x + v , f (x) +∇f (x)T v) | v ∈ Rn} ⊆ Rn+1.

Methods like gradient descent approximate a function locally by its
tangent plane, and then take a step accordingly.
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Recitation 1 Multivariable Calculus

Tangent Plane for f : R2 → R
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Recitation 1 Multivariable Calculus

Directional Derivatives from Gradients

If f is differentiable we obtain a formula for any directional derivative
in terms of the gradient

f ′(x ; u) = ∇f (x)Tu.

This implies that a direction is a descent direction if and only if it
makes an acute angle with the negative gradient.

If ∇f (x) 6= 0 applying Cauchy-Schwarz gives

arg max
‖u‖2=1

f ′(x ; u) =
∇f (x)

‖∇f (x)‖2
and arg min

‖u‖2=1
f ′(x ; u) = − ∇f (x)

‖∇f (x)‖2
.

The gradient points in the direction of steepest ascent.

The negative gradient points in the direction of steepest descent.
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Recitation 1 Multivariable Calculus

Critical Points

Analogous to 1-d, if f : Rn → R is differentiable and x is a local
extremum then we must have ∇f (x) = 0.

Points with ∇f (x) = 0 are called critical points.

Later in the course we will see that for a convex differentiable
function, x is a critical point if and only if it is a global minimizer.
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Recitation 1 Multivariable Calculus

Critical Points of f : R2 → R

Brett Bernstein (CDS at NYU) Recitation 1 April 18, 2019 30 / 37



Recitation 1 Multivariable Calculus

Recap

To find a good decision function we will minimize the empirical loss
on the training data.

Having fixed a hypothesis space parameterized by θ, finding a good
decision function means finding a good θ.

Given a current guess for θ, we will use the gradient of the empirical
loss (w.r.t. θ) to get a local linear approximation.

If the gradient is non-zero, taking a small step in the direction of the
negative gradient is guaranteed to decrease the empirical loss.

This motivates the minimization algorithm called gradient descent.
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Recitation 1 Computing Gradients

Computing Gradients

Question

For questions 1 and 2, compute the gradient of the given function.

1 J : R3 → R is given by

J(θ1, θ2, θ3) = log(1 + eθ1+2θ2+3θ3).

2 J : Rn → R is given by

J(θ) = ‖Xθ−y‖22 = (Xθ−y)T (Xθ−y) = θTXTXθ−2yTXθ+yT y ,

for some X ∈ Rm×n and y ∈ Rm.

3 Assume X in the previous question has full column rank. What is the
critical point of J?

Brett Bernstein (CDS at NYU) Recitation 1 April 18, 2019 32 / 37



Recitation 1 Computing Gradients

J(θ1, θ2, θ3) = log(1 + eθ1+2θ2+3θ3) Solution 1

We can compute the partial derivatives directly:

∂θ1J(θ1, θ2, θ3) =
eθ1+2θ2+3θ3

1 + eθ1+2θ2+3θ3

∂θ2J(θ1, θ2, θ3) =
2eθ1+2θ2+3θ3

1 + eθ1+2θ2+3θ3

∂θ3J(θ1, θ2, θ3) =
3eθ1+2θ2+3θ3

1 + eθ1+2θ2+3θ3

and obtain

∇J(θ1, θ2, θ3) =


eθ1+2θ2+3θ3

1 + eθ1+2θ2+3θ3

2eθ1+2θ2+3θ3

1 + eθ1+2θ2+3θ3

3eθ1+2θ2+3θ3

1 + eθ1+2θ2+3θ3

 .
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Recitation 1 Computing Gradients

J(θ1, θ2, θ3) = log(1 + eθ1+2θ2+3θ3) Solution 2

Spot the linear algebra!

Let w = (1, 2, 3)T .

Write J(θ) = log(1 + ew
T θ).

Apply a version of the chain rule (twice):

∇J(θ) =
ew

T θ

1 + ewT θ
w .

Theorem (Chain Rule)

If g : R→ R and h : Rn → R are differentiable then

∇(g ◦ h)(x) = g ′(h(x))∇h(x).
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Recitation 1 Computing Gradients

J(θ) = ‖Xθ − y‖2
2 Solution

We could use techniques similar to the previous problem, but instead
we show a different method using directional derivatives.

For arbitrary t ∈ R and θ, v ∈ Rn we have

J(θ + tv)
= (θ + tv)TXTX (θ + tv)− 2yTX (θ + tv) + yT y
= θTXTXθ + t2vTXTXv + 2tθTXTXv − 2yTXθ − 2tyTXv + yT y

= J(θ) + t(2θTXTX − 2yTX )v + t2vTXTXv .

This gives

J ′(θ; v) = lim
t→0

J(θ + tv)− J(θ)

t
= (2θTXTX − 2yTX )v = ∇J(θ)T v

Thus ∇J(θ) = 2(XTXθ − XT y) = 2XT (Xθ − y).

Data science interpretation of ∇J(θ) (assuming columns of X are
centered)?
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Recitation 1 Computing Gradients

Critical Points of J(θ) = ‖Xθ − y‖2
2

Need ∇J(θ) = 2XTXθ − 2XT y = 0.

Since X is assumed to have full column rank, we see that XTX is
invertible.

Thus we have θ = (XTX )−1XT y .

As we will see later, this function is strictly convex (Hessian
∇2J(θ) = 2XTX is positive definite).

Thus we have found the unique minimizer (least squares solution).
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Recitation 1 Computing Gradients

Technical Aside: Differentiability

When computing the gradients above we assumed the functions were
differentiable.

Can use the following theorem to be completely rigorous.

Theorem

Let f : Rn → R and suppose ∂i f : Rn → R is continuous for i = 1, . . . , n.
Then f is differentiable.
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