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Intro Question

For any w € R? and a € R, w'x — b = 0 represents the equation of a
hyperplane in RY. A hyperplane divides the space R into two parts. We
are given two points xi, x> € RY.
© For d =2, consider w = (2,3)7 and b = 6. Does x; = (0,0)" and
xo = (4,3)7 fall on the same side of the hyper plane?

@ How can we write a computer program to determine this for a generic
w, a,x; and d?
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Component of vy, v» in the direction w
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Component of vy, v» in the direction w
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Q@ S={xeR?| wlx=b}. What does this look like?

@ Notethat w/ix=bh — ¥«
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Sides of the Hyperplane w'v =
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Signed Distance from x to Hyperplane w’v = b

@ "Signed” distance? Isn't distance always non-negative?

o If we have a vector x € R? and a hyperplane H = {v | w'v = b} we

can measure the distance from x to H by
Ty _
d(x. H) = ‘be'

w2

@ Without the absolute values we get the signed distance: a positive
distance if w”x > b and a negative distance if w'x < b.
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Question

Question

You have been given a data set (x;,y;) for i = 1,...,n where x; € R and
yi € {—1,1}. You are also given a hyper plane parameterized by w € RY
and b € R. Give an algorithm to check if w”x = b separates the data
points correctly or in other words, if y = +1 and y = —1 fall on two
different sides of the hyperplane.
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Linearly Separable

Definition
We say (x;, y;) for i = 1,..., n are linearly separable if there is a w € RY

and b € R such that y;(w’x; — b) > 0 for all i. The set
{veRy | w'v —b=0}is called a separating hyperplane.
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Linearly Separable Data
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How many separating hyperplanes?
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Many Separating Hyperplanes Exist

How do we pick one?
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Geometric Margin

Definition
Let H be a hyperplane that separates the data (x;, y;) for i =1,...,n.
The geometric margin of this hyperplane is

min d(x;, H),

the distance from the hyperplane to the closest data point.
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Maximum Margin Separating Hyperplane
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Maximizing margin

We want to:
maximize min d(x;, H)
1
Remember:
d(xi, H) ‘WTX,'—b‘ yi(wTx; — b)
X; = = .
v w2 [ wll2
So:
o _yi(wTx — b)
maximize,, p miln W

o (T xi— .
Note, if M = min; M, then yilw”xi—b) > M for all i
lwll2 lwll2
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Maximizing margin

We can rewrite this in a more standard form:
maximize,, p py M
o .
subject to vilw xi=b) > p1 for all |,

wll2

fix ||w|l2 = 1/M to obtain

maximize, p 1/[|w||2
subject to yilwTs; —b) > 1 forall i.

To find the optimal w, a we can instead solve the minimization problem

minimize,, , |w||3
subject to  yi(w'x; —b)>1 foralli.
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Linearly Non-Separable
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What should we do if the data isn't linearly separable?
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Soft Margin SVM (unlabeled points have & = 0)
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Soft Margin SVM (introduce slack)

minimize,, p ¢ ||W||% + % Yo &
subject to yilwTxj —b) >1—¢& foralli
& >0 forallj.

@ What does & > 0 mean?
@ What does C control?

© Note that y"(vl'l’;ﬁ’:ra) > ” ”' What does & = 1 and & = 3 mean?
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Question

Explain geometrically what the following optimization problem computes:

minimize,, ,.¢ %27:1 &

subject to yilwTx;+a)>1-¢ foralli
lwl3 < r?
& >0 foralli.
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Optimize Over Cases Where Margin Is At Least 1/r
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