Geometric Derivation of SVMs

Sreyas Mohan and Brett Bernstein

CDS at NYU

20 Feb 2019

Sreyas Mohan and Brett Bernstein (NYU)

Geometric Derivation of SVMs

20 Feb 2019 1 / 22

Question

For any $w \in \mathbb{R}^d$ and $a \in \mathbb{R}$, $w^T x - b = 0$ represents the equation of a hyperplane in \mathbb{R}^d . A hyperplane divides the space \mathbb{R}^d into two parts. We are given two points $x_1, x_2 \in \mathbb{R}^d$.

- For d = 2, consider $w = (2,3)^T$ and b = 6. Does $x_1 = (0,0)^T$ and $x_2 = (4,3)^T$ fall on the same side of the hyper plane?
- Observe the second term of term

Component of v_1 , v_2 in the direction w

Sreyas Mohan and Brett Bernstein (NYU)

Geometric Derivation of SVMs

20 Feb 2019 3 / 22

Component of v_1 , v_2 in the direction w

1
$$S = \{x \in \mathbb{R}^d \mid w^T x = b\}$$
. What does this look like?
2 Note that $w^T x = b \iff \frac{w^T x}{\|w\|_2} = \frac{b}{\|w\|_2}$

(日) (四) (三) (三) (三)

Level Surfaces of $f(v) = w^T v$ with $||w||_2 = 1$

▶ ◀ 볼 ▶ 볼 ∽ ९... 20 Feb 2019 6 / 22

Sides of the Hyperplane $w^{T}v = 15$

Sreyas Mohan and Brett Bernstein (NYU)

Geometric Derivation of SVMs

20 Feb 2019 7 / 22

- "Signed" distance? Isn't distance always non-negative?
- If we have a vector $x \in \mathbb{R}^d$ and a hyperplane $H = \{v \mid w^T v = b\}$ we can measure the distance from x to H by

$$d(x,H) = \left|\frac{w^T x - b}{\|w\|_2}\right|$$

Without the absolute values we get the signed distance: a positive distance if w^Tx > b and a negative distance if w^Tx < b.

Signed Distance from x_1, x_2 to Hyperplane $w^T v = 20$

Geometric Derivation of SVMs

Question

You have been given a data set (x_i, y_i) for i = 1, ..., n where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. You are also given a hyper plane parameterized by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Give an algorithm to check if $w^T x = b$ separates the data points correctly or in other words, if y = +1 and y = -1 fall on two different sides of the hyperplane.

Definition

We say (x_i, y_i) for i = 1, ..., n are linearly separable if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^T x_i - b) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^T v - b = 0\}$ is called a *separating hyperplane*.

Linearly Separable Data

How many separating hyperplanes?

Geometric Derivation of SVMs

Many Separating Hyperplanes Exist

How do we pick one?

Geometric Derivation of SVMs

Definition

Let *H* be a hyperplane that separates the data (x_i, y_i) for i = 1, ..., n. The geometric margin of this hyperplane is

 $\min_i d(x_i, H),$

the distance from the hyperplane to the closest data point.

Maximum Margin Separating Hyperplane

Sreyas Mohan and Brett Bernstein (NYU)

Geometric Derivation of SVMs

20 Feb 2019 15 / 22

We want to:

maximize $\min_{i} d(x_i, H)$

Remember:

$$d(x_i, H) = \left| \frac{w^T x_i - b}{\|w\|_2} \right| = \frac{y_i(w^T x_i - b)}{\|w\|_2}.$$

So:

$$\begin{aligned} & \text{maximize}_{w,b} \min_{i} \frac{y_i(w^T x_i - b)}{\|w\|_2}. \end{aligned}$$

Note, if $M = \min_{i} \frac{y_i(w^T x_i - b)}{\|w\|_2}$, then $\frac{y_i(w^T x_i - b)}{\|w\|_2} \ge M$ for all i

< A

-∢ ∃ ▶

We can rewrite this in a more standard form:

$$\begin{array}{ll} \max \\ \max \\ \operatorname{subject to} & M \\ \frac{y_i(w^T x_i - b)}{\|w\|_2} \geq M \quad \text{for all } i. \end{array}$$

fix $||w||_2 = 1/M$ to obtain

maximize_{w,b}
$$1/||w||_2$$

subject to $y_i(w^T x_i - b) \ge 1$ for all *i*.

To find the optimal w, a we can instead solve the minimization problem

minimize_{w,b}
$$||w||_2^2$$

subject to $y_i(w^T x_i - b) \ge 1$ for all *i*.

Linearly Non-Separable

What should we do if the data isn't linearly separable?

Soft Margin SVM (unlabeled points have $\xi_i = 0$)

Geometric Derivation of SVMs

20 Feb 2019 19 / 22

Question

Explain geometrically what the following optimization problem computes:

$$\begin{array}{ll} \text{minimize}_{w,a,\xi} & \frac{1}{n} \sum_{i=1}^{n} \xi_i \\ \text{subject to} & y_i(w^T x_i + a) \ge 1 - \xi_i \quad \text{for all } i \\ & \|w\|_2^2 \le r^2 \\ & \xi_i \ge 0 \quad \text{for all } i. \end{array}$$

Optimize Over Cases Where Margin Is At Least 1/r

20 Feb 2019 22 / 22