Review: MLE and Conditional Probability Models

Xintian Han & David S. Rosenberg

CDS, NYU

March 5, 2019
Contents

1 Maximum Likelihood
2 Bernoulli Regression
3 Poisson Regression
4 Conditional Gaussian Regression
5 Multinomial Logistic Regression
6 Maximum Likelihood as ERM
7 Review Questions
Maximum Likelihood
Suppose $\mathcal{D} = (y_1, \ldots, y_n)$ is an i.i.d. sample from some distribution.

Definition

A maximum likelihood estimator (MLE) for θ in the model $\{p(y; \theta) \mid \theta \in \Theta\}$ is

$$
\hat{\theta} \in \arg \max_{\theta \in \Theta} \log p(\mathcal{D}, \hat{\theta})
$$

$$
= \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log p(y_i; \theta).
$$
Maximum Likelihood Estimation

- Finding the MLE is an optimization problem.
- For some model families, calculus gives a closed form for the MLE.
- Can also use numerical methods we know (e.g. SGD).
In certain situations, the MLE may not exist.
But there is usually a good reason for this.

E.g. Gaussian family \(\{ \mathcal{N}(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 > 0 \} \)
We have a single observation \(y \).
Is there an MLE?

Taking \(\mu = y \) and \(\sigma^2 \to 0 \) drives likelihood to infinity.
MLE doesn’t exist.
Example: MLE for Poisson

- Observed counts $\mathcal{D} = (k_1, \ldots, k_n)$ for taxi cab pickups over n weeks.
 - k_i is number of pickups at Penn Station Mon, 7-8pm, for week i.
- We want to fit a Poisson distribution to this data.
- The Poisson log-likelihood for a single count is
 \[
 \log [p(k; \lambda)] = \log \frac{\lambda^k e^{-\lambda}}{k!} = k \log \lambda - \lambda - \log (k!)
 \]
- The full log-likelihood is
 \[
 \log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]
 \]
Example: MLE for Poisson

- The full log-likelihood is

\[
\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]
\]

- First order condition gives

\[
0 = \frac{\partial}{\partial \lambda} [\log p(\mathcal{D}, \lambda)] = \sum_{i=1}^{n} \left[\frac{k_i}{\lambda} - 1 \right]
\]

\[\implies \lambda = \frac{1}{n} \sum_{i=1}^{n} k_i\]

- So MLE \(\hat{\lambda} \) is just the mean of the counts.
• Just as in classification and regression, MLE can overfit!
• Example Probability Models:
 • \(\mathcal{F} = \{ \text{Poisson distributions} \} \).
 • \(\mathcal{F} = \{ \text{Negative binomial distributions} \} \).
 • \(\mathcal{F} = \{ \text{Histogram with 10 bins} \} \).
 • \(\mathcal{F} = \{ \text{Histogram with bin for every } y \in \mathcal{Y} \} \) [will likely overfit for continuous data]
• How to judge which model works the best?
• Choose the model with the highest likelihood on validation set.
Bernoulli Regression
Probabilistic Binary Classifiers

- Setting: $X = \mathbb{R}^d$, $Y = \{0, 1\}$
- For each x, need to predict a distribution on $Y = \{0, 1\}$.
- How can we define a distribution supported on $\{0, 1\}$?
- Sufficient to specify the **Bernoulli parameter** $\theta = p(y = 1)$.
- We can refer to this distribution as Bernoulli(θ).
Linear Probabilistic Classifiers

- Setting: $X = \mathbb{R}^d$, $Y = \{0, 1\}$
- Want prediction function to map each $x \in \mathbb{R}^d$ to $\theta \in [0, 1]$.
- We first extract information from $x \in \mathbb{R}^d$ and summarize in a single number.
 - That number is analogous to the score in classification.
- For a linear method, this extraction is done with a linear function:
 \[
 \begin{align*}
 x &\mapsto w^T x \\
 \in \mathbb{R}^d &\mapsto \in \mathbb{R}
 \end{align*}
 \]
 - As usual, $x \mapsto w^T x$ will include affine functions if we include a constant feature in x.
 - $w^T x$ is called the linear predictor.
- Still need to map this to $[0, 1]$.
The Transfer Function

- Need a function to map the linear predictor in \mathbb{R} to $[0, 1]$:
 \[
 \begin{align*}
 x \in \mathbb{R}^d & \mapsto w^T x \mapsto f(w^T x) = \theta, \\
 \in [0, 1]
 \end{align*}
 \]

 where $f : \mathbb{R} \rightarrow [0, 1]$. We'll call f the transfer function.

- So prediction function is $x \mapsto f(w^T x)$.

...
Transfer Functions for Bernoulli

- Two commonly used transfer functions to map from $w^T x$ to θ:

- Logistic function: $f(\eta) = \frac{1}{1 + e^{-\eta}}$ \Rightarrow Logistic Regression
- Normal CDF $f(\eta) = \int_{-\infty}^{\eta} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \Rightarrow$ Probit Regression
Learning

- Input space $\mathcal{X} = \mathbb{R}^d$
- Outcome space $\mathcal{Y} = \{0, 1\}$
- Action space $\mathcal{A} = [0, 1]$ (Representing Bernoulli(θ) distributions by $\theta \in [0, 1]$)
- Hypothesis space $\mathcal{F} = \{ x \mapsto f(w^T x) \mid w \in \mathbb{R}^d \}$
- Parameter space \mathbb{R}^d (Each prediction function represented by $w \in \mathbb{R}^d$.)
- We can choose w using maximum likelihood...
A Clever Way To Write $\hat{p}(y | x; w)$

- For a given $x, w \in \mathbb{R}^d$ and $y \in \{0, 1\}$, the likelihood of w for (x, y) is

$$p(y | x; w) = \begin{cases} f(w^T x) & y = 1 \\ 1 - f(w^T x) & y = 0 \end{cases}$$

- It will be convenient to write this as

$$p(y | x; w) = [f(w^T x)]^y [1 - f(w^T x)]^{1-y},$$

which is obvious as long as you remember $y \in \{0, 1\}$.
Bernoulli Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} : (x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{0, 1\}$.
- The likelihood of $w \in \mathbb{R}^d$ for data \mathcal{D} is
 \[
p(\mathcal{D}; w) = \prod_{i=1}^{n} p(y_i \mid x_i; w) \quad \text{[by independence]}
 = \prod_{i=1}^{n} \left[f(w^T x_i)
ight]^{y_i} [1 - f(w^T x_i)]^{1 - y_i}.
\]
- Easier to work with the log-likelihood:
 \[
 \log p(\mathcal{D}; w) = \sum_{i=1}^{n} \left(y_i \log f(w^T x_i) + (1 - y_i) \log [1 - f(w^T x_i)] \right)
 \]
Bernoulli Regression: MLE

- Maximum Likelihood Estimation (MLE) finds \(w \) maximizing \(\log p(\mathcal{D}, w) \).
- Equivalently, minimize the **negative log-likelihood** objective function
 \[
 J(w) = - \left[\sum_{i=1}^{n} y_i \log f(w^T x_i) + (1 - y_i) \log [1 - f(w^T x_i)] \right].
 \]

- For differentiable \(f \),
 - \(J(w) \) is differentiable, and we can use SGD.
 - What guarantees us to find the global minima of \(J(w) \) by SGD?
 - Convexity of \(J(w) \)!
Poisson Regression
Poisson Regression: Setup

- Input space $\mathcal{X} = \mathbb{R}^d$, Output space $\mathcal{Y} = \{0, 1, 2, 3, 4, \ldots \}$
- In Poisson regression, prediction functions produce a Poisson distribution.
 - Represent Poisson(λ) distribution by the mean parameter $\lambda \in (0, \infty)$.
- Action space $\mathcal{A} = (0, \infty)$
- In Poisson regression, x enters linearly: $x \mapsto w^T x \mapsto \lambda = f(w^T x)$.
- What can we use as the transfer function $f : \mathbb{R} \rightarrow (0, \infty)$?
In Poisson regression, x enters **linearly**:

$$x \mapsto w^T x \mapsto \lambda = f(w^T x).$$

Standard approach is to take

$$f(w^T x) = \exp(w^T x).$$

Note that range of $f(w^T x) \in (0, \infty)$, (appropriate for the Poisson parameter).
Poisson Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
- Recall the log-likelihood for Poisson parameter λ_i on observation y_i is:
 \[\log p(y_i; \lambda_i) = [y_i \log \lambda_i - \lambda_i - \log (y_i!)] \]
- Now we want to predict a different λ_i for every x_i with the model
 \[\lambda_i = f(w^T x_i) = \exp(w^T x_i). \]
- The likelihood for w on the full dataset \mathcal{D} is
 \[\log p(\mathcal{D}; w) = \sum_{i=1}^{n} [y_i \log [\exp(w^T x_i)] - \exp(w^T x_i) - \log (y_i!)] \]
 \[= \sum_{i=1}^{n} [y_i w^T x_i - \exp(w^T x_i) - \log (y_i!)] \]
To get MLE, need to maximize

\[
J(w) = \log p(\mathcal{D}; w) = \sum_{i=1}^{n} \left[y_i w^T x_i - \exp \left(w^T x_i \right) - \log (y_i!) \right]
\]

over \(w \in \mathbb{R}^d \).

No closed form for optimum, but it’s concave, so easy to optimize.
Example application: Phone call counts per day for a startup company, over 300 days.
Blue line is mean $\mu(x) = \exp(wx)$, some $w \in \mathbb{R}$. (Only linear part $x \mapsto wx$ is learned.)
Samples are $y_i \sim \text{Poisson}(wx_i)$.

Plot courtesy of Brett Bernstein.
Nonlinear Score Function: Sneak Preview

- Blue line is mean $\mu(x) = \exp(f(x))$, for some nonlinear f learned from data.
- Samples are $y_i \sim \text{Poisson}(\exp(f(x_i)))$.
- We can do this with gradient boosting and neural networks, coming up in a few weeks.

Plot courtesy of Brett Bernstein.
Conditional Gaussian Regression
Gaussian Linear Regression

- Input space $\mathcal{X} = \mathbb{R}^d$, Output space $\mathcal{Y} = \mathbb{R}$
- In Gaussian regression, prediction functions produce a distribution $\mathcal{N}(\mu, \sigma^2)$.
 - Assume σ^2 is known.
- Represent $\mathcal{N}(\mu, \sigma^2)$ by the mean parameter $\mu \in \mathbb{R}$.
- Action space $\mathcal{A} = \mathbb{R}$
- In Gaussian linear regression, x enters linearly: $x \mapsto w^T x \mapsto \mu = f(w^T x)$.
- Since $\mu \in \mathbb{R}$, we can take the identity transfer function: $f(w^T x) = w^T x$.

\[X_{\text{Intian Han & David S. Rosenberg (CDS, NYU)}} \]
Gaussian Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
- Compute the model likelihood for \mathcal{D}:

$$p(\mathcal{D}; w) = \prod_{i=1}^{n} p(y_i | x_i; w) \text{ [by independence]}$$

- Maximum Likelihood Estimation (MLE) finds w maximizing $\hat{p}(\mathcal{D}; w)$.
- Equivalently, maximize the data log-likelihood:

$$w^* = \arg \max_{w \in \mathbb{R}^d} \sum_{i=1}^{n} \log p(y_i | x_i; w)$$

- Let’s start solving this!
Gaussian Regression: MLE

- The conditional log-likelihood is:

\[
\sum_{i=1}^{n} \log p(y_i \mid x_i; w) \\
= \sum_{i=1}^{n} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right] \\
= \sum_{i=1}^{n} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \right] + \sum_{i=1}^{n} \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right)
\]

independent of \(w \)

- MLE is the \(w \) where this is maximized.
- Note that \(\sigma^2 \) is irrelevant to finding the maximizing \(w \).
- Can drop the negative sign and make it a minimization problem.
Gaussian Regression: MLE

The MLE is

\[w^* = \arg \min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} (y_i - w^T x_i)^2 \]

This is exactly the objective function for least squares.

From here, can use usual approaches to solve for \(w^* \) (SGD, linear algebra, calculus, etc.)
Multinomial Logistic Regression
Multinomial Logistic Regression

- Setting: $X = \mathbb{R}^d$, $Y = \{1, \ldots, k\}$

- For each x, we want to produce a distribution on k classes.

- Such a distribution is called a “multinoulli” or “categorical” distribution.

- Represent categorical distribution by probability vector $\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{R}^k$:
 - $\sum_{i=1}^k \theta_i = 1$ and $\theta_i \geq 0$ for $i = 1, \ldots, k$ (i.e. θ represents a distribution) and
 - So $\forall y \in \{1, \ldots, k\}, p(y) = \theta_y$.
Multinomial Logistic Regression

- From each x, we compute a linear score function for each class:
 \[x \mapsto (\langle w_1, x \rangle, \ldots, \langle w_k, x \rangle) \in \mathbb{R}^k, \]
 where we’ve introduced parameter vectors $w_1, \ldots, w_k \in \mathbb{R}^d$.
- We need to map this \mathbb{R}^k vector of scores into a probability vector.
- Consider the **softmax function**:
 \[(s_1, \ldots, s_k) \mapsto \theta = \left(\frac{e^{s_1}}{\sum_{i=1}^{k} e^{s_i}}, \ldots, \frac{e^{s_k}}{\sum_{i=1}^{k} e^{s_i}} \right). \]
- Note that $\theta \in \mathbb{R}^k$ and
 \[
 \theta_i \quad > \quad 0 \quad i = 1, \ldots, k
 \]
 \[
 \sum_{i=1}^{k} \theta_i \quad = \quad 1
 \]
Multinomial Logistic Regression

1. Say we want to get the predicted categorical distribution for a given \(x \in \mathbb{R}^d \).
2. First compute the scores \((\in \mathbb{R}^k)\) and then their softmax:

\[
x \mapsto (\langle w_1, x \rangle, \ldots, \langle w_k, x \rangle) \mapsto \theta = \left(\frac{\exp (w_1^T x)}{\sum_{i=1}^k \exp (w_i^T x)}, \ldots, \frac{\exp (w_k^T x)}{\sum_{i=1}^k \exp (w_i^T x)} \right)
\]

3. We can write the conditional probability for any \(y \in \{1, \ldots, k\} \) as

\[
p(y \mid x; w) = \frac{\exp (w_y^T x)}{\sum_{i=1}^k \exp (w_i^T x)}.
\]
Multinomial Logistic Regression

- Putting this together, we write multinomial logistic regression as
 \[
p(y \mid x; w) = \frac{\exp(w_y^T x)}{\sum_{i=1}^{k} \exp(w_i^T x)}.
 \]
- How do we do learning here? What parameters are we estimating?
- Our model is specified once we have \(w_1, \ldots, w_k \in \mathbb{R}^d \).
- Find parameter settings maximizing the log-likelihood of data \(\mathcal{D} \).
- This objective function is concave in \(w \)'s and straightforward to optimize.
Maximum Likelihood as ERM
Conditional Probability Modeling as Statistical Learning

- Input space \mathcal{X}
- Outcome space \mathcal{Y}
- All pairs (x, y) are independent with distribution $P_{\mathcal{X} \times \mathcal{Y}}$.
- **Action space** $\mathcal{A} = \{p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y}\}$.
- Hypothesis space \mathcal{F} contains decision functions $f : \mathcal{X} \rightarrow \mathcal{A}$.
- Maximum likelihood estimation for dataset $\mathcal{D} = ((x_1, y_1), \ldots, (x_n, y_n)$ is

$$
\hat{f}_{\text{MLE}} \in \arg \max_{f \in \mathcal{F}} \sum_{i=1}^{n} \log [f(x_i)(y_i)]
$$
Conditional Probability Modeling as Statistical Learning

- Take loss $\ell : \mathcal{A} \times \mathcal{Y} \to \mathbb{R}$ for a predicted PDF or PMF $p(y)$ and outcome y to be
 $$\ell(p, y) = -\log p(y)$$

- The risk of decision function $f : \mathcal{X} \to \mathcal{A}$ is
 $$R(f) = -\mathbb{E}_{x,y} \log [f(x)(y)],$$
 where $f(x)$ is a PDF or PMF on \mathcal{Y}, and we’re evaluating it on y.

The empirical risk of f for a sample $\mathcal{D} = \{y_1, \ldots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(f) = -\frac{1}{n} \sum_{i=1}^{n} \log [f(x_i)](y_i).$$

This is called the negative conditional log-likelihood.

Thus for the negative log-likelihood loss, ERM and MLE are equivalent.
Review Questions
Maximum Likelihood

1. Suppose we have samples x_1, \ldots, x_n i.i.d drawn from $\text{Bernoulli}(p)$. Find the maximum likelihood estimator of p.

2. Suppose we have samples x_1, \ldots, x_n i.i.d drawn from uniform distribution $\mathcal{U}(a, b)$. Find the maximum likelihood estimator of a and b.

Maximum Likelihood

- Suppose we have samples \(x_1, \ldots, x_n \) i.i.d drawn from \(\text{Bernoulli}(p) \). Find the maximum likelihood estimator of \(p \).

Solution:

- The likelihood is:
 \[
 L(p) = \prod_{i=1}^{n} p^{x_i} (1 - p)^{1-x_i}.
 \]

- The log-likelihood is:
 \[
 \ell(p) = \log p \sum_{i=1}^{n} x_i + \log(1 - p) \sum_{i=1}^{n} (1 - x_i).
 \]

- Set the derivative of log-likelihood w.r.t. \(p \) to zero:
 \[
 \frac{\partial \ell(p)}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{\sum_{i=1}^{n} (1 - x_i)}{1 - p} = 0.
 \]
Maximum Likelihood

- Solving the equation above, we have:

\[p = \frac{1}{n} \sum_{i=1}^{n} x_i. \]

- The second derivative of log-likelihood w.r.t. \(p \) is

\[
\frac{\partial^2 \ell(p)}{\partial p^2} = -\sum_{i=1}^{n} \frac{x_i}{p^2} - \sum_{i=1}^{n} \frac{(1-x_i)}{(1-p)^2}.
\]

- Since \(p \in [0,1] \) and \(x_i \in \{0,1\} \), the second derivative is always negative. The log-likelihood is concave. Therefore, \(p = \frac{1}{n} \sum_{i=1}^{n} x_i \) gives us the MLE.

- A twice differentiable function of one variable is concave on an interval if and only if its second derivative is non-positive there!

- Why cannot we have the same closed form solution for logistic regression?
Suppose we have samples \(x_1, \ldots, x_n \) i.i.d drawn from uniform distribution \(\mathcal{U}(a, b) \). Find the maximum likelihood estimator of \(a \) and \(b \).

Solution:

The likelihood is:

\[
L(a, b) = \prod_{i=1}^{n} \left(\frac{1}{b-a} \mathbb{1}_{[a,b]}(x_i) \right)
\]

- Let \(x_{(1)}, \ldots, x_{(n)} \) be the order statistics.
- The likelihood is greater than zero if and only \(a < x_{(1)} \) and \(b > x_{(n)} \).
- When \(a < x_{(1)} \) and \(b > x_{(n)} \), the likelihood is a monotonically decreasing function of \((b-a)\).
- And the smallest \((b-a)\) will be attained when \(b = x_{(n)} \) and \(a = x_{(1)} \).
- Therefore, \(b = x_{(n)} \) and \(a = x_{(1)} \) give us the MLE.
Maximum Likelihood

1. We want to fit a regression model where \(Y|X = x \sim \mathcal{U}([0, e^{w^T x}]) \) for some \(w \in \mathbb{R}^d \). Given i.i.d. data points \((X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R}\), give a convex optimization problem that finds the MLE for \(w \).

2. Suppose we have input-output pairs \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \), where \(x_i \in \mathbb{R}^p \) and \(y_i \in N = \{0, 1, 2, 3, \ldots\} \) for \(i = 1, \ldots, n \). Our task is to train a Poisson regression to model the data. Assume the linear coefficients in the model is \(w \).

 1. Suppose a test point \(x^* \) is orthogonal to the space generated by the training data. What is the prediction \(\ell_2 \) regularized Poisson GLM make on the test point?
 2. Will the solution of the parameters \(\hat{w} \) still be sparse when we use \(\ell_1 \) regularization?
Maximum Likelihood

- We want to fit a regression model where \(Y|X = x \sim \mathcal{U}([0, e^{w^T x}]) \) for some \(w \in \mathbb{R}^d \). Given i.i.d. data points \((X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R} \), give a convex optimization problem that finds the MLE for \(w \).

Solution: The likelihood \(L \) is given by

\[
L(w; x_1, y_1, \ldots, x_n, y_n) = \prod_{i=1}^n \frac{1(y_i \leq e^{w^T x_i})}{e^{w^T x_i}}.
\]

Taking logs we get

\[
- \sum_{i=1}^n w^T x_i = - w^T \left(\sum_{i=1}^n x_i \right)
\]

if \(y_i \leq \exp(w^T x_i) \) for all \(i \), or \(-\infty \) otherwise. Thus we obtain the linear program

\[
\text{minimize} \quad w^T \left(\sum_{i=1}^n x_i \right)
\]

subject to \(\log(y_i) \leq w^T x_i \) for \(i = 1, \ldots, n \).
Maximum Likelihood

- Suppose we have input-output pairs \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \), where \(x_i \in \mathbb{R}^p \) and \(y_i \in \mathbb{N} = \{0, 1, 2, 3, \ldots\} \) for \(i = 1, \ldots, n \). Our task is to train a Poisson regression to model the data. Assume the linear coefficients in the model is \(w \).

- Suppose a test point \(x^* \) is orthogonal to the space generated by the training data. What is the prediction \(\ell_2 \) regularized Poisson GLM make on the test point?

Solution: \(\ell_2 \) penalized Poisson regression objective:

\[
\hat{J}(w) = -\sum_{i=1}^{n} \left[y_i w^T x_i - \exp \left(w^T x_i \right) - \log (y_i!) \right] + \lambda \|w\|_2^2
\]

From Representer Theorem, the minimizer \(\hat{w} = \sum_{i=1}^{n} \alpha_i x_i \). The prediction is

\[
\exp(w^T x^*) = \exp(\sum_{i=1}^{n} \alpha_i x_i^T x^*) = \exp(0) = 1
\]
Suppose we have input-output pairs \{((x_1, y_1), \ldots, (x_n, y_n))\}, where \(x_i \in \mathbb{R}^P\) and \(y_i \in N = \{0, 1, 2, 3, \ldots\}\) for \(i = 1, \ldots, n\). Our task is to train a Poisson regression to model the data. Assume the linear coefficients in the model is \(w\).

Will the solution of the parameters \(\hat{w}\) still be sparse when we use \(\ell_1\) regularization?

Solution: Negative log-likelihood of Poisson regression is a convex function. The sublevel set is a convex set. The level set is the boundary of the sublevel set. When the level set approaches the diamond (level set of the \(\ell_1\) norm), it is still likely to hit the corner of the diamond.