Machine Learning — Brett Bernstein

On the Uniqueness of the SVM Solution

Hard-Margin SVM
Recall that the hard-margin SVM problem is the following:

minimize,; |Jw]|3
subject to  yi(wx; +b) > 1 foralle=1,...,n.

We prove the following theorem.

Theorem 1. Let (z;,vy;) € R x {—1,+1} fori=1,...,n be our training data, and suppose
there are w € R? and b € R such that y;(wTx; +b) > 0 for all i (i.e., linear separability).
Furthermore, suppose there ewist i,j with y; = +1 and y; = —1. Then there is a unique
minimizer (w*,b*) to the hard-margin SVM problem.

First we establish the following lemma.

Lemma 2. Consider the optimization problem

minimize,egm vern  f (W) + g(v)
subject to (w,v) € 8,

where S C R™™ 4s convex, [ is strictly convex, and g is convex. If (wy,v1) and (wq,ve) are
both minimizers then w; = ws.

Proof. Suppose, for contradiction, that (wq,v;) and (ws,v9) are minimizers with w; # ws.
Since S is convex, the average ((wy + w2)/2, (v1 +v2)/2) is also feasible. By strict convexity
we have

f(wr +w2)/2) < fw1)/2 4 f(w2)/2,
and by convexity we have
g((v1 +v2)/2) < g(v1)/2 + g(v2) /2.
Thus

f((wr +w2)/2) + g((v1 +v2)/2) < fe) ;g(vl) + f<w2);—g(vg) = f(wi) + g(v1),

with the last equality following since the two minimizers have equal objective values. This
contradicts our assumption that (wy,v;) is a minimizer, and completes the proof. ]



Proof of Theorem 1. First we establish existence. Let wp,by, satisfy y;(wrz; +by) > € for
all ¢ and some € > 0 (such wr, by must exist by linear separability). Then we have

T b
yi(ﬂ ZUH——L) > 1.
€ €

This shows (wr, /€, by /€) is in the feasible set. Thus any minimizer (w., b, ), if it exists, must
have ||w.||2 < ||wr|]2/€. Furthermore, if ||w.| < ||wg||2/€ then note that

—yib < yowle; — 1 < |ywla] +1

implies that
b <1+ [lwill2flzillz < 1+ [lwellafill2/e

when y; = —1 and
—b < 1+ [Jwell2||lzill2 < 1T+ [lwg||2]|2:|2/€

when y; = +1. By assumption, both values of y; appear in our data set. Thus we obtain

Bl < 14 [Jwr [l max ]2/ e.

This shows that we are optimizing a continuous function over a non-empty compact region,
and thus must have a minimizer.
Next we prove uniqueness. Suppose (wi,b;) and (wsq,bs) are both minimizers. By the

lemma we have w; = wy using f(w) = |Jw||3 and g(b) = 0. To prove b; = by we use
the following fact: at any minimizer (w,,b,) there must be ¢,j with y; = +1, y; = —1,
wlz; +b, =1 and wl'z; + b, = —1. Geometrically, this says that there must be points from

both classes lying on the margin boundaries. Note that this implies b; = by since increasing
b, makes w*ij + b, > —1 and decreasing b, makes wfxi + b, < 1. Thus what remains
is to establish this geometric fact. To prove it, suppose all data points ¢ with y; = +1
have wlz; + b > 1 and let m = min,,_,; wlz; + b — 1. Letting @ = w./(1 + m/2) and
b= (b, —m/2)/(1+m/2) we obtain a new feasible point with a strictly lower objective:

» wle;+b,—m/2 S 1+m/2

AT .

s ~1 fy; = +1),

W 1+m/2  —1+m/2 (ifyi = +1)
T+ by —m/2 _ —1—m/2

W4 b= Wit o m/2 M2 iy = 1),
1+m/2 14+m/2

The same argument will apply if we swap the roles of +1 and —1, thus proving the geometric
fact, and completing our proof. O

Soft-Margin SVM
The soft-margin SVM problem is given by

minimize, ¢ [l +C 0L, &
subject to yi(wla; +0) >1-§ fori=1,...,n
& >0 fori=1,...,n.
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Here C' > 0 is a given constant, and (z;,y;) are as in the hard-margin SVM, but not neces-
sarily linearly separable. Applying the lemma with f(w) = ||w|3 and g(§,b) = C Y"1 | & we
see that the minimizer w, is uniquely determined. Unfortunately, b, is not always uniquely
determined. To see how this can happen, suppose

{ilyi=+1 and yi(wiz;+b) <1} =[{i|y;=—1 and yi(wlz; +b,) <1},

Then we can slightly decrease b, while keeping > ", & constant. This is analogous to the lack
of uniqueness that can occur when proving the conditional median minimizes the absolute
difference loss. For more, see [1], [2].
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