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Learning Theory Framework
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Some Formalization

The Spaces

X: input space Y: outcome space A: action space

Prediction Function (or “decision function”)

A prediction function (or decision function) gets input x ∈X and produces an action a ∈A :

f : X → A

x 7→ f (x)

Loss Function
A loss function evaluates an action in the context of the outcome y .

` : A×Y → R
(a,y) 7→ `(a,y)
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f : X→A is

R(f ) = E`(f (x),y).

In words, it’s the expected loss of f on a new example (x ,y) drawn randomly from PX×Y.

Definition
A Bayes prediction function f ∗ : X→A is a function that achieves the minimal risk among
all possible functions:

f ∗ ∈ argmin
f

R(f ),

where the minimum is taken over all functions from X to A.

The risk of a Bayes prediction function is called the Bayes risk.
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Bayes Prediction Function

If loss function is L2, then f ∗(x) = E [Y |X = x ]

if loss function is L1, then f ∗(x) is the median of the distribution of Y conditioned on
X = x .
If Y is discrete and loss function is 0−1 loss, then f ∗(x) = argmax

c∈Y
p(y = c |x)

Question: Let x be sampled uniformly from {−100,−99, . . . ,99,100}. For every sample xi , yi is
generated as yi = xi +η, η ∼ N(0,σ), σ > 0. What is the Bayes prediction function under L2
and L1 loss?
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The Empirical Risk

Let Dn = ((x1,y1), . . . ,(xn,yn)) be drawn i.i.d. from PX×Y.
The empirical risk of f : X→A with respect to Dn is

R̂n(f ) =
1
n

n∑
i=1

`(f (xi ),yi ).

A function f̂ is an empirical risk minimizer if

f̂ ∈ argmin
f

R̂n(f ),

where the minimum is taken over all functions.

But unconstrained ERM can overfit.
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Constrained Empirical Risk Minimization

Hypothesis space F, a set of [prediction] functions mapping X→A

Empirical risk minimizer (ERM) in F is

f̂n ∈ argmin
f∈F

1
n

n∑
i=1

`(f (xi ),yi ).

Risk minimizer in F is f ∗F ∈ F , where

f ∗F ∈ argmin
f∈F

E`(f (x),y).
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Error Decomposition

f ∗ =argmin
f

E`(f (X ),Y )

fF =argmin
f∈F

E`(f (X ),Y ))

f̂n =argmin
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

Approximation Error (of F) = R(fF)−R(f ∗)

Estimation error (of f̂n in F) = R(f̂n)−R(fF)

Sreyas Mohan and David S. Rosenberg (New York University)DS-GA 1003 / CSCI-GA 2567 March 6, 2018 9 / 53



Excess Risk Decomposition for ERM

The excess risk of the ERM f̂n can be decomposed:

Excess Risk(f̂n) = R(f̂n)−R(f ∗)

= R(f̂n)−R(fF)︸ ︷︷ ︸
estimation error

+ R(fF)−R(f ∗)︸ ︷︷ ︸
approximation error

.
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Optimization Error

In practice, we don’t find the ERM f̂n ∈ F.
Optimization algorithm returns f̃n ∈ F , which we hope is good enough.
Optimization error: If f̃n is the function our optimization method returns, and f̂n is the
empirical risk minimizer, then

Optimization Error = R(f̃n)−R(f̂n).

Extended decomposition:

Excess Risk(f̃n) = R(f̃n)−R(f ∗)

= R(f̃n)−R(f̂n)︸ ︷︷ ︸
optimization error

+R(f̂n)−R(fF)︸ ︷︷ ︸
estimation error

+ R(fF)−R(f ∗)︸ ︷︷ ︸
approximation error

Sreyas Mohan and David S. Rosenberg (New York University)DS-GA 1003 / CSCI-GA 2567 March 6, 2018 11 / 53



Question

Select true of false for each of the following statements:
1 Approximation Error is a Random Variable
2 Estimation Error is a Random Variable
3 Optimization Error is a Random Variable.
4 If the hypothesis space consists of all possible functions functions, then approximation

error is non-zero.
5 Estimation Error can be negative.
6 Optimization Error can be negative.
7 The empirical risk of the ERM, R̂(f̂ ), is an unbiased estimator of the risk of the ERM

R(f̂ ). Does your answer change if it’s a R̂(f ) where f is independent of training data?
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Question

For each, use 6, >, or = to determine the relationship between the two quantities, or if the
relationship cannot be determined. Throughout assume F1,F2 are hypothesis spaces with
F1 ⊂ F2, and assume we are working with a fixed loss function `.

1 The estimation errors of two decision functions f1, f2 that minimize the empirical risk over
the same hypothesis space, where f2 uses 5 extra data points.

2 The approximation errors of the two decision functions f1, f2 that minimize risk with
respect to F1,F2, respectively (i.e., f1 = fF1 and f2 = fF2).

3 The empirical risks of two decision functions f1, f2 that minimize the empirical risk over
F1,F2, respectively. Both use the same fixed training data.

4 The estimation errors (for F1,F2, respectively) of two decision functions f1, f2 that
minimize the empirical risk over F1,F2, respectively.

5 The risk of two decision functions f1, f2 that minimize the empirical risk over F1,F2,
respectively.
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Solution

1 Roughly speaking, more data is better, so we would tend to expect that f2 will have lower
estimation error. That said, this is not always the case, so the relationship cannot be
determined.

2 The approximation error of f1 will be larger.
3 The empirical risk of f1 will be larger.
4 Roughly speaking, increasing the hypothesis space should increase the estimation error

since the approximation error will decrease, and we expect to need more data. That said,
this is not always the case, so the answer is the relationship cannot be determined.

5 Cannot be determined.
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Regularization
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Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ [0,∞) and fixed r > 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

s.t.Ω(f )6 r

Choose r using validation data or cross-validation.
Each r corresponds to a different hypothesis spaces. Could also write:

min
f∈Fr

1
n

n∑
i=1

`(f (xi ),yi )
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Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ [0,∞) and fixed λ> 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )+λΩ(f )

Choose λ using validation data or cross-validation.
(Ridge regression in homework is of this form.)
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Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22,

where ‖w‖22 = w2
1 + · · ·+w2

d is the square of the `2-norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖226r2

1
n

n∑
i=1

{
wT xi − yi

}2
.
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Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖1,

where ‖w‖1 = |w1|+ · · ·+ |wd | is the `1-norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖16r

1
n

n∑
i=1

{
wT xi − yi

}2
.
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Ridge vs. Lasso: Regularization Paths

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Linearly Dependent Features: Take Away

For identical features
`1 regularization spreads weight arbitrarily (all weights same sign)
`2 regularization spreads weight evenly

Linearly related features
`1 regularization chooses variable with larger scale, 0 weight to others
`2 prefers variables with larger scale – spreads weight proportional to scale
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Correlated Features, `1 Regularization

w2

w1

‖w‖1 ≤ 2

w2

w1

‖w‖1 ≤ 2

Intersection could be anywhere on the top right edge.
Minor perturbations (in data) can drastically change intersection point – very unstable
solution.
Makes division of weight among highly correlated features (of same scale) seem arbitrary.

If x1 ≈ 2x2, ellipse changes orientation and we hit a corner. (Which one?)
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Elastic Net

The elastic net combines lasso and ridge penalties:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ1‖w‖1+λ2‖w‖22

We expect correlated random variables to have similar coefficients.
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Highly Correlated Features, Elastic Net Constraint

w2

w1

.8‖w‖1 + .2‖w‖2
2 ≤ 2

Elastic net solution is closer to w2 = w1 line, despite high correlation.
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Elastic Net Results on Model
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Lasso on left; Elastic net on right.
Ratio of `2 to `1 regularization roughly 2 : 1.
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Elastic Net Summary

With uncorrelated features, we can get sparsity.
Among correlated features (same scale), we spread weight more evenly.
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Question on correlated features

We solve lasso and ridge regression where input lives in R4. The first two features of all the
input vector are duplicates of each other, or xi1 = xi2 for all i . Consider the following weight
vectors:

1 (0,1.2,6.7,2.1)T

2 (0.6,0.6,6.7,2.1)T

3 (1.2,0,6.7,2.1)T

4 (−0.1,1.3,6.7,2.1)T

Which of them are valid solution for a) Ridge Regression and b) Lasso Regression?
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Finding Lasso Solution

Many options.
Convert to quadratic program using positive/negative parts

min
w+,w−

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i w−
i > 0 for all i ,

Coordinate descent

Lasso has closed form solution for coordinate minimizers!

Subgradient descent
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Optimization
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Gradient Descent for Empirical Risk and Averages

Suppose we have a hypothesis space of functions F =
{
fw : X→A | w ∈ Rd

}
Parameterized by w ∈ Rd .

ERM is to find w minimizing

R̂n(w) =
1
n

n∑
i=1

`(fw (xi ),yi )

Suppose `(fw (xi ),yi ) is differentiable as a function of w .

Then we can do gradient descent on R̂n(w)...
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Gradient Descent: How does it scale with n?

At every iteration, we compute the gradient at current w :

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

We have to touch all n training points to take a single step. [O(n)]

What if we just use an estimate of the gradient?
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Minibatch Gradient

The full gradient is

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

It’s an average over the full batch of data Dn = {(x1,y1), . . . ,(xn,yn)}.

Let’s take a random subsample of size N (called a minibatch):

(xm1 ,ym1), . . . ,(xmN
,ymN

)

The minibatch gradient is

∇R̂N(w) =
1
N

N∑
i=1

∇w `(fw (xmi ),ymi )

Minibatch gradient is an unbiased estimate of full-batch gradient: E
[
∇R̂N(w)

]
=∇R̂n(w)
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How big should minibatch be?

Tradeoffs of minibatch size:
Bigger N =⇒ Better estimate of gradient, but slower (more data to touch)
Smaller N =⇒Worse estimate of gradient, but can be quite fast

Even N = 1 works, it’s traditionally called stochastic gradient descent (SGD).

Quality of minibatch estimate depends on
size of minibatch
but is independent of full dataset size n

Discussed in Concept Check question.
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Subgradient Review

Definition (Subgradient and Subdifferential)

A vector g is a subgradient of (convex) f : Rd → R at x if for all z

f (z)> f (x)+gT (z− x)

. The set of all subgradients at x is called the subdifferential of f at x ∂f (x)

Questions:
1 (True/False) If f is convex and differentiable everywhere in the domain, then
∂f (x) = {∇f (x)}

2 (True/False) The subdifferential of f at x , ∂f (x) is always a convex set. (Null set is
trivially complex)
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Descent Directions

A step direction is a descent direction if, for small enough step size, the objective
function value always decreases.

Negative gradient is a descent direction.

A negative subgradient is not a descent direction. But always takes you closer to a
minimizer.
Negative stochastic or minibatch gradient direction is not a descent direction. But we
have convergence theorems.
Negative stochastic subgradient step direction is not a descent direction. But we have
convergence theorems (not discussed in class).
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Classification
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The Score Function

Action space A= R Output space Y= {−1,1}
Real-valued prediction function f : X→ R

Definition
The value f (x) is called the score for the input x .

In this context, f may be called a score function.
Intuitively, magnitude of the score represents the confidence of our prediction.
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The Margin

Definition
The margin (or functional margin) for predicted score ŷ and true class y ∈ {−1,1} is y ŷ .

The margin often looks like yf (x), where f (x) is our score function.
The margin is a measure of how correct we are.

If y and ŷ are the same sign, prediction is correct and margin is positive.
If y and ŷ have different sign, prediction is incorrect and margin is negative.

We want to maximize the margin.
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Classification Losses

Logistic/Log loss: `Logistic = log (1+ e−m)

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).
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Support Vector Machine

Hypothesis space F =
{
f (x) = wT x +b | w ∈ Rd , b ∈ R

}
.

`2 regularization (Tikhonov style)
Loss `(m) =max {1−m,0}

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.
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SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Differentiable objective function
n+d +1 unknowns and 2n affine constraints.
A quadratic program that can be solved by any off-the-shelf QP solver.
We arrived at this optimization problem also from a geometric prospective.
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Linear Separability and Hard Margin SVM

Definition (Linear Separability)

We say (xi ,yi ) for i = 1, . . . ,n are linearly separable if there is a w ∈ Rd and b ∈ R such that
yi (w

T xi −b)> 0 for all i . The set {v ∈ Rd | wT v −b = 0} is called a separating hyperplane.
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Maximum Margin Separating Hyperplane

M

M

wT v+a
‖w‖2 = −M

wT v+a
‖w‖2 = 0

wT v+a
‖w‖2 = M
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Soft Margin SVM (unlabeled points have ξi = 0)

ξi = 1.5

ξi = 3

ξi = 1.5
ξi = 2
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The Representer Theorem and Kernelization
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

where
w ,x1, . . . ,xn ∈H for some Hilbert space H. (We typically have H = Rd .)
‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=

√
〈w ,w〉)

R : [0,∞)→ R is nondecreasing (Regularization term), and
L : Rn→ R is arbitrary (Loss term).

Ridge regression and SVM are of this form.
What if we use lasso regression? No! `1 norm does not correspond to an inner product.
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The Representer Theorem

Let J(w) = R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) under conditions described above.

Theorem (Representer Theorem)

If J(w) has a minimizer, then it has a minimizer of the form

w∗ =
n∑

i=1

αixi .

If R is strictly increasing, then all minimizers have this form.

Basic idea of proof:
Let M = span(x1, . . . ,xn). [the “span of the data”]
Let w = ProjMw∗, for some minimizer w∗ of J(w).
Then 〈w ,xi 〉= 〈w∗,xi 〉, so loss part doesn’t change.
‖w‖6 ‖w∗‖, since projection reduces norm. So regularization piece never increases.
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Reparametrization with Representer Theorem

Original plan:
Find w∗ ∈ argminw∈HR (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)
Predict with f̂ (x) = 〈w∗,x〉.

Plugging in result of representer theorem, it’s equivalent to

Find α∗ ∈ argminα∈Rn R
(√
αTKα

)
+L(Kα)

Predict with f̂ (x) = kTx α
∗, where

K =

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 and kx =

〈x1,x〉
...

〈xn,x〉


Every element x ∈H occurs inside an inner products with a training input xi ∈H.
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Kernelization

Definition
A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x ′). This applies to both the optimization problem and the prediction
function.

Here we are using ψ(x) = x . Thus finding

α∗ ∈ argmin
α∈Rn

R
(√
αTKα

)
+L(Kα)

and making predictions with f̂ (x) = kTx α
∗ is a kernelization of finding

w∗ ∈ argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

and making predictions with f̂ (x) = 〈w∗,x〉.
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Kernelization

Once we have kernelized:
α∗ ∈ argminα∈Rn R

(√
αTKα

)
+L(Kα)

f̂ (x) = kTx α
∗

We can do the “kernel trick”.

Replace each 〈x ,x ′〉 by k(x ,x ′), for any kernel function k , where k(x ,x ′) = 〈ψ(x),ψ(x ′)〉.

Predictions

f̂ (x) =
n∑

i=1

α∗i k(xi ,x)
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The Kernel Function: Why do we need this?

Feature map: ψ : X→H

The kernel function corresponding to ψ is

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
.

Why introduce this new notation k(x ,x ′)?

We can often evaluate k(x ,x ′) without explicitly computing ψ(x) and ψ(x ′).

For large feature spaces, can be much faster.
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Kernelized SVM (From Lagrangian Duality)

Kernelized SVM from computing the Lagrangian Dual Problem:

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

If α∗ is an optimal value, then

w∗ =
n∑

i=1

α∗i yixi and f̂ (x) =
n∑

i=1

α∗i yix
T
i x .

Note that the prediction function is also kernelized.
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Sparsity in the Data from Complementary Slackness

Kernelized predictions given by

f̂ (x) =
n∑

i=1

α∗i yix
T
i x .

By a Lagrangian duality analysis (specifically from complementary slackness), we find

yi f̂ (xi )< 1 =⇒ α∗i =
c

n

yi f̂ (xi ) = 1 =⇒ α∗i ∈
[
0,
c

n

]
yi f̂ (xi )> 1 =⇒ α∗i = 0

So we can leave out any xi “on the good side of the margin” (yi f̂ (xi )> 1).
xi ’s that we must keep, because α∗i 6= 0, are called support vectors.
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