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Hypothesis Spaces

@ We've spoken vaguely about “bigger” and “smaller” hypothesis spaces

@ In practice, convenient to work with a nested sequence of spaces:
F1CHhCFy---CT
Polynomial Functions

o F ={all polynomial functions}

o F4 ={all polynomials of degree < d}
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Complexity Measures for Decision Functions

Number of variables / features
Depth of a decision tree

Degree of polynomial

How about for linear decision functions, i.e. x — w'x = wixi + -+ wyxg?

o {y complexity: number of non-zero coefficients 27:1 1(w; #£0).
o {1 “lasso” complexity: Zf’=1|w,-|, for coefficients wy, ..., wy
o {5 "ridge” complexity: Z,‘-f:l w? for coefficients wy, ..., wy
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Nested Hypothesis Spaces from Complexity Measure

Hypothesis space: F

Complexity measure Q : F — [0, 00)

Consider all functions in & with complexity at most r:

Fr={feFlQ(f)<r}

Increasing complexities: r=0,1.2,2.6,5.4,... gives nested spaces:

FoCTF12CFr6CIssC---CTF
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Constrained Empirical Risk Minimization

Constrained ERM (lvanov regularization)

For complexity measure QO : F — [0, 00) and fixed r > 0,

st. Q(f) < r

@ Choose r using validation data or cross-validation.

@ Each r corresponds to a different hypothesis spaces. Could also write:

fedF, n 4

min = > 0(F(x), )
=1
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Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)
For complexity measure Q) : F — [0, 00) and fixed A > 0,

n

min1 Lf(x;), i) +AQ(f)

@ Choose A using validation data or cross-validation.

o (Ridge regression in homework is of this form.)
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lvanov vs Tikhonov Regularization

@ Let L:F — R be any performance measure of f
e e.g. L(f) could be the empirical risk of f

For many L and Q, Ivanov and Tikhonov are “equivalent”.
What does this mean?

o Any solution f* you could get from lvanov, can also get from Tikhonov.
e Any solution f* you could get from Tikhonov, can also get from Ivanov.

In practice, both approaches are effective.

@ Tikhonov convenient because it's unconstrained minimization.

Can get conditions for equivalence from Lagrangian duality theory — details in homework.
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lvanov vs Tikhonov Regularization (Details)

Ivanov and Tikhonov regularization are equivalent if:
@ For any choice of r >0, any lvanov solution

f* cargminL(f) st. Q(f)<r
fesF

is also a Tikhonov solution for some A > 0. That is, 3A > 0 such that

f* € argminL(f) +AQ(f).
fesF

@ Conversely, for any choice of A > 0, any Tikhonov solution:

fx € argmin L(f) +AQ(f)
feg

is also an Ivanov solution for some r > 0. That is, Ir > 0 such that

fx €argminL(f) s.t. Q(f)<r
fesF
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{1 and {» Regularization
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Linear Least Squares Regression

@ Consider linear models

ff:{f:Rd—>R|f(x):WTxfor WeRd}

Loss: £(y,y) = (y—)°
Training data D, = ((x1,¥1),--., (Xn, ¥n))

@ Linear least squares regression is ERM for { over J:

n

N .1 2
W = argmin fZ {WTX,'—y;}
weRd M2y

@ Can overfit when d is large compared to n.

@ e.g.: d> n very common in Natural Language Processing problems (e.g. a 1M features
for 10K documents).
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Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)
The ridge regression solution for regularization parameter A > 0 is

n

~ H 1 2
W = arg min — Z {wTxi—yi}" +|w|3,
weRd N =1

where [|w||3 = w2 +---+ w3 is the square of the {,-norm.

Ridge Regression (lvanov Form)

The ridge regression solution for complexity parameter r > 0 is

W—argmlan{W Xij — y,} .

Iwlig<r? M=
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How does {5 regularization induce “regularity?

For f(x) = wTx, f is Lipschitz continuous with Lipschitz constant L = ||W]|2.
That is, when moving from x to x + h, f changes no more than L| .

So £, regularization controls the maximum rate of change of f.

Proof:

e 6 o o

Fix+h)—f(x)| = W (x+h) —w"x=|w"h|
< ||w||2] h||2(Cauchy-Schwarz inequality)

Since |W|[1 > ||W]|2, an {1 constraint will also give a Lipschitz bound.
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Ridge Regression: Regularization Path

Ridge Regression

n

o | funding W, = argmin l Z (wT-Ti - yi)2
= lell3<r? ™52

W = s = Unconstrained ERM
o 9iel%a
o college

e For r =0, ||w,|]2/||w]]2 = 0.
o e For r = oo, ||[w,||2/||w]l2 = 1

hs

00 02 04 06 08 1.0
[ |2/ ll0]l2

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter A > 0 is

~ H 1 . 2
W = argmin fZ {wx —yi} +A|w|1,
weRd M55

where [|w||1 = |wi|+ -+ |wyl| is the £1-norm.

Lasso Regression (lvanov Form)

The lasso regression solution for complexity parameter r > 0 is

—argmlan{W Xj — y,

Iwlla<r M52
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Lasso Regression: Regularization Path

Lasso n
5 funding W, = argmin e Z (le"i - yi)2
e — lwlh<r T 52
W = 1Ws = Unconstrained ERM
o S
o - | college
e For r =0, ||w.||1/||w|l, = 0.
@ e For r = oo, [[u[l/[@]h =1
hs

00 02 04 06 08 1.0
[, 12/ 1]

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Ridge vs. Lasso: Regularization Paths

Ridge Regression

fundin
o | unding
o - 8dhede
o 4 college
o _|
I

hs

T T T T T T
00 02 04 06 08 1.0

[ |2/ [0

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Gives Feature Sparsity: So What?

Coefficient are 0 = don't need those features. What's the gain?

Time/expense to compute/buy features

Memory to store features (e.g. real-time deployment)

o
o
@ Identifies the important features
o Better prediction? sometimes

o

As a feature-selection step for training a slower non-linear model
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lvanov and Tikhonov Equivalent?

@ For ridge regression and lasso regression (and much more)

e the lvanov and Tikhonov formulations are equivalent
o [Optional homework problem, upcoming.]

o We will use whichever form is most convenient.
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Why does Lasso regression give sparse solutions? J
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Parameter Space

o lllustrate affine prediction functions in parameter space.
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The £1 and €» Norm Constraints

@ For visualization, restrict to 2-dimensional input space
o F={f(x) = wixi +waxy} (linear hypothesis space)
@ Represent F by {(Wl, wp) € RZ}.

@ (> contour: @ {; contour:
W12+W22:r lwil+wa| =r

Where are the “sparse” solutions?
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The Famous Picture for £1 Regularization

o fr=argmin,cre 2> 7, (wlx— y,) subject to|wy|+|wo| < r

e/

@ Blue region: Area satisfying complexity constraint: |wy|+|wa| < r

o Red lines: contours of R,(w)=3 ", (wTx— y,) .

1

KPM Fig. 13.3
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The Empirical Risk for Square Loss

@ Denote the empirical risk of f(x) =w"x by
~ 1 5
Rufw) = = Xy 2

where X is the design matrix.
o R, is minimized by w = (XTX)leTy, the OLS solution.
e What does R, look like around w?
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The Empirical Risk for Square Loss

@ By “completing the square”, we can show for any w € RY:

Ro(w) = 1 (w—w)" XTX (w—w)+ R, (W)

3>

o Set of w with R,(w) exceeding R,(W) by ¢ >0 is
{Wmn(w ) = c+ Ry (W) { )TXTX(W—VT/):nc},

which is an ellipsoid centered at w.

o We'll derive this in homework.
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The Famous Picture for £, Regularization

° fr* = argminweRz Zn 1 (W Xj — y,) subject to W12+ W22 <r

o Blue region: Area satisfying complexity constraint: w? +w2 < r

@ Red lines: contours of R,(w) =37, (w'x— y,) .

KPM Fig. 13.3
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Why are Lasso Solutions Often Sparse?

£1-ball =l

ey <

@ Suppose design matrix X is orthogonal, so X7 X =/, and contours are circles.

@ Then OLS solution in green or red regions implies {; constrained solution will be at corner

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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https://arxiv.org/abs/1411.3230

The (ﬂq) 7 Constraint

o Generalize to £g : (||w]|¢g)? = lw1|? +[wal?.

e Note: ||wl|q is a norm if g > 1, but not for g € (0,1)
o F={f(x) =wixy +woxo}.

e Contours of ||w|d = |wi|? +|wo|?:

g=4 g=2 g=1 g=0.5
| | | [
| | | |
DS-GA 1003 / CSCI-GA 2567
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{q Even Sparser

af?]

1
Z,-ball ol

lleellg < po with g < 1

(b) £-ball with g < 1.

@ Suppose design matrix X is orthogonal, so X7 X =/, and contours are circles.

@ Then OLS solution in green or red regions implies £, constrained solution will be at corner

{4-ball constraint is not convex, so more difficult to optimize.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.9
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https://arxiv.org/abs/1411.3230

The Quora Picture

e From Quora: “Why is L1 regularization supposed to lead to sparsity than L27 [sic]”
(google it)

A L1 regularization B L2 regularization

A T2 x2

Ho Ho

el ”,,.”_JK |
ZONNFAN

@ Does this picture have any interpretation that makes sense? (Aren't those lines supposed
to be ellipses?)
@ Yes... we can revisit.

Figure from https://www.quora.com/Why-is-L1-regularization-supposed-to-lead-to-sparsity-than-L2.
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Finding the Lasso Solution: Lasso as Quadratic Program J

Julia Kempe & David S. Rosenberg (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 February 5, 2019 31/50



How to find the Lasso solution?

@ How to solve the Lasso? .

min Z (WTX,- —y,-)2 +A|wl1

d
weR P

o ||wlj1 = |wil+|wz| is not differentiable!
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Splitting a Number into Positive and Negative Parts

e Consider any number a € R.
@ Let the positive part of a be

at =al(a>0)
o Let the negative part of a be

a =-—al(a<0).
@ Do you see why at >0 and a— > 07
@ How do you write a in terms of a* and a7
@ How do you write |a| in terms of a* and a~ 7
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How to find the Lasso solution?

@ The Lasso problem

. 2
min (WTX,'—y,') +Al|w|1
weRd “
i=1
o Replace each w; by w;" —w; .
o Write wt = (Wf,...,wj) and w— = (Wf,...,WJ).
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The Lasso as a Quadratic Program

+

We will show: substituting w =w* —w™ and |w|=w™ +w™ gives an equivalent problem:

min i ((W+ — Wf)TXi—yi)z—H\lT (w+ + W*)

i
wt,w ,
! i=1

subject to WI-+ >0 for all i w; >0 for all /,

e Objective is differentiable (in fact, convex and quadratic)
@ 2d variables vs d variables and 2d constraints vs no constraints

@ A “quadratic program’: a convex quadratic objective with linear constraints.
e Could plug this into a generic QP solver.
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Possible point of confusion

Equivalent to lasso problem:

n - 5
min Z((W*—W*) X,-—y,-) +7\1T(W++W7)
subject to w;" >0 for all i w; >0 for all i,

@ When we plug this optimization problem into a QP solver,
e it just sees 2d variables and 2d constraints.
e Doesn't know we want w,.+ and w;  to be positive and negative parts of w;.

@ Turns out — they will come out that way as a result of the optimization!

@ But to eliminate confusion, let's start by calling them a; and b; and prove our claim...
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The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

n

min min Z <(a—b)Tx,~—y;)2+?\1T(a+b)

w  ab é
i=1
subject to  a; > 0 for all b; >0 for all /,
a—b=w

a+b=|w|

@ Claim: Don't need constraint a+b = |w]|.

@ a’ <+ a—min(a, b) and b’ < b—min(a, b) at least as good

@ So if a and b are minimizers, at least one is 0.

@ Since a—b=w, we must have a=w™ and b=w". So also a+ b =|wl.
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The Lasso as a Quadratic Program

n

2
min min a—b)Tx,-— ) +A1T (a+b)
(( Y

w  ab

i=1
subject to a; >0 for all J b; > 0 for all i,

a—b=w

@ Claim: Can remove min,, and the constraint a— b = w.

@ One way to see this is by switching the order of minimization...
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The Lasso as a Quadratic Program

2
min min < -—y,-) +A17 (a+b)
ab w 1

subject to  a; 2 0 for all i b; >0 for all /,

a—b=w

@ For any a>0,b >0, there's always a single w that satisfies the constraints.

@ So the inner minimum is always attained at w = a— b.

@ Since w doesn't show up in the objective function,
e nothing changes if we drop min,, and the constraint.
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The Lasso as a Quadratic Program

@ So lasso optimization problem is equivalent to

n
2
i )T x— ) AT (a+b
min ;((a )T xi—yi) +A17 (a+b)
subject to a; >0 for all J b; > 0 for all /,

where at the end we take w* = a* — b* (and we've shown above that a* and b* are
positive and negative parts of w*, respectively.)

@ Has constraints — how do we optimize?
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Projected SGD

n

min Z

T 2 T + _
e e 2 —w ) X; y,) +A (W +w )
i

0 for all i

subject to w:™ >0 for all i
w; =0

@ Just like SGD, but after each step

e Project w and w™ into the constraint set.
o In other words, if any component of w* or w— becomes negative, set it back to 0.
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Finding the Lasso Solution: Coordinate Descent (Shooting Method) J
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Coordinate Descent Method

Goal: Minimize L(w) = L(w,...,wy) over w = (wy,...,wy) € RY.

In gradient descent or SGD,

e each step potentially changes all entries of w.
@ In each step of coordinate descent,
e we adjust only a single w;.

@ In each step, solve

new .
wi Y =argminL(wy, ..., Wi_1, W;, Wit1, ..., Wy)

Wi

Solving this argmin may itself be an iterative process.

@ Coordinate descent is great when
e it's easy or easier to minimize w.r.t. one coordinate at a time
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Coordinate Descent Method

Coordinate Descent Method
Goal: Minimize L(w) = L(w1,...wy) over w = (w1,...,wy) € RY.
o Initialize w(® =0
@ while not converged:
o Choose a coordinate j €{1,...,d}

° anew «— argminwj L(Wl(t), . Wj(i)l,Wj, Wj(i)l, o Wcst))
° W}Hl) — anew and w(ttl) (1)
o t+—t+1

@ Random coordinate choice == stochastic coordinate descent

@ Cyclic coordinate choice = cyclic coordinate descent

In general, we will adjust each coordinate several times.
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Coordinate Descent Method for Lasso

@ Why mention coordinate descent for Lasso?

o In Lasso, the coordinate minimization has a closed form solution!
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Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso
W —argman w x;— y,) +Alwly
WJER i=1

Then
( )\)/aj if G < —A
=140 if ¢; € [-AN
( —7\)/aj if ¢ > A

n

o 2

aJ—2E X7 CJ—2E xijlyi—w_ x,_J)
i=1

where w_; is w without component j and similarly for x; _;.
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Coordinate Descent: When does it work?

Suppose we're minimizing f : RY — R.

Sufficient conditions:

@ f is continuously differentiable and
@ f is strictly convex in each coordinate

@ But lasso objective
n

S (wWTxi—y)* +A|wls

i=1

is not differentiable...

Luckily there are weaker conditions...
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Coordinate Descent: The Separability Condition

Theorem

aIf the objective f has the following structure

flwi, ..., wg) _g(le---de)+Zhj(Wj)r

where
o g:R? — R is differentiable and convex, and

@ each hj:R— R is convex (but not necessarily differentiable)

then the coordinate descent algorithm converges to the global minimum.

2Tseng 2001: “Convergence of a Block Coordinate Descent Method for Nondifferentiable
Minimization”
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Coordinate Descent Method — Variation

@ Suppose there's no closed form? (e.g. logistic regression)

@ Do we really need to fully solve each inner minimization problem?
@ A single projected gradient step is enough for {; regularization!
o Shalev-Shwartz & Tewari's “Stochastic Methods..." (2011)
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Stochastic Coordinate Descent for Lasso — Variation

o Let w=(wt,w)eR? and

n

L(w) :Z ((W+—Wi)TX,'—yi>2+7\(W++W7)

i=1

Stochastic Coordinate Descent for Lasso - Variation

Goal: Minimize L(W) s.t. W.+,w,._ >0 for all i.

1
e Initialize W) =0
o while not converged:

o Randomly choose a coordinate j €11,..., 2d}
° W« vT/j+max{—|7vj,—VjL(ﬁ/)}
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