Subgradient Descent

Xintian Han \& David S. Rosenberg
NYU CDS

Feb 13, 2019

Contents

(1) Motivation and Review: Lasso
(2) Convexity and Sublevel Sets
(3) Convex and Differentiable Functions
(4) Subgradients
(5) Subgradient Descent

Motivation and Review: Lasso

The Lasso Problem

- Lasso problem can be parametrized as

$$
\min _{w \in \mathbf{R}^{d}} J(w)=\frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{1}
$$

- We could solve Lasso by Shooting Method and Projected SGD.
- How about using SGD?
- $\|w\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|$ is not differentiable!

Gradient Descent on Lasso Objective?

- The partial gradient of the Lasso objective is

$$
\nabla_{w} J(w)=\frac{1}{n} \sum_{j=1}^{n} 2\left\{w^{\top} x_{j}-y_{j}\right\} x_{j}+\lambda \cdot \operatorname{sign}(w)
$$

when $w_{i} \neq 0$ for all i, and otherwise is undefined.
Potential arguments for why we shouldn't care about the points of nondifferentiability:

- If we start with a random w, will we ever hit exactly $w_{i}=0$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $w_{i}=0$ with floating point numbers?

Gradient Descent on Lasso Objective?

- If we blindly apply gradient descent from a random starting point
- seems unlikely that we'll hit a point where the gradient is undefined.
- So it's clear how we could apply gradient descent or SGD to a function that's not differentiable everywhere
- Still, doesn't mean that gradient descent will work if objective not differentiable!
- Theory of subgradients and subgradient descent will clear up any uncertainty.

Convexity and Sublevel Sets

Convex Sets

Definition

A set C is convex if the line segment between any two points in C lies in C.

Convex and Concave Functions

Definition

A function $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex if the line segment connecting any two points on the graph of f lies above the graph. f is concave if $-f$ is convex.

Examples of Convex Functions on \mathbf{R}

Examples

- $x \mapsto a x+b$ is both convex and concave on \mathbf{R} for all $a, b \in \mathbf{R}$.
- $x \mapsto|x|^{p}$ for $p \geqslant 1$ is convex on \mathbf{R}
- $x \mapsto e^{a x}$ is convex on \mathbf{R} for all $a \in \mathbf{R}$
- Every norm on R^{n} is convex (e.g. $\|x\|_{1}$ and $\|x\|_{2}$)
- Max: $\left(x_{1}, \ldots, x_{n}\right) \mapsto \max \left\{x_{1} \ldots, x_{n}\right\}$ is convex on \mathbf{R}^{n}

Simple Composition Rules

Examples

- If g is convex, and $A x+b$ is an affine mapping, then $g(A x+b)$ is convex.
- If g is convex then $\exp g(x)$ is convex.
- If g is convex and nonnegative and $p \geqslant 1$ then $g(x)^{p}$ is convex.
- If g is concave and positive then $\log g(x)$ is concave
- If g is concave and positive then $1 / g(x)$ is convex.

Main Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
- Very clearly written, but has a ton of detail for a first pass.
- See the Extreme Abridgement of Boyd and Vandenberghe.

Convex

 Optimization
Level Sets and Sublevel Sets

Let $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ be a function. Then we have the following definitions:
Definition
A level set or contour line for the value c is the set of points $x \in \mathbf{R}^{d}$ for which $f(x)=c$.

Definition
A sublevel set for the value c is the set of points $x \in \mathbf{R}^{d}$ for which $f(x) \leqslant c$.

Theorem
If $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex, then the sublevel sets are convex.
(Proof straight from definitions.)

Convex Function

Contour Plot Convex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leqslant 1\}$ convex?

Nonconvex Function

Plot courtesy of Brett Bernstein.

Contour Plot Nonconvex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leqslant 1\}$ convex?

Fact: Intersection of Convex Sets is Convex

Level and Superlevel Sets

Level sets and superlevel sets of convex functions are not generally convex.

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize	$f_{0}(x)$
subject to	$f_{i}(x) \leqslant 0, \quad i=1, \ldots, m$

where f_{0}, \ldots, f_{m} are convex functions.

- What can we say about each constraint set $\left\{x \mid f_{i}(x) \leqslant 0\right\}$? (convex)
- What can we say about the feasible set $\left\{x \mid f_{i}(x) \leqslant 0, i=1, \ldots, m\right\}$? (convex)

Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

where f is a convex function and C is a convex set.
An alternative "generic" convex optimization problem.

Convex and Differentiable Functions

First-Order Approximation

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is differentiable.
- Predict $f(y)$ given $f(x)$ and $\nabla f(x)$?
- Linear (i.e. "first order") approximation:

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)
$$

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex and differentiable.
- Then for any $x, y \in \mathbf{R}^{d}$

$$
f(y) \geqslant f(x)+\nabla f(x)^{T}(y-x)
$$

- The linear approximation to f at x is a global underestimator of f :

Figure from Boyd \& Vandenberghe Fig. 3.2; Proof in Section 3.1.3

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex and differentiable
- Then for any $x, y \in \mathbf{R}^{d}$

$$
f(y) \geqslant f(x)+\nabla f(x)^{T}(y-x)
$$

Corollary
If $\nabla f(x)=0$ then x is a global minimizer of f.
For convex functions, local information gives global information.

Subgradients

Subgradients

Definition

A vector $g \in \mathbf{R}^{d}$ is a subgradient of $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ at x if for all z,

$$
f(z) \geqslant f(x)+g^{T}(z-x)
$$

Blue is a graph of $f(x)$.
Each red line $x \mapsto f\left(x_{0}\right)+g^{T}\left(x-x_{0}\right)$ is a global lower bound on $f(x)$.

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the subdifferential: $\partial f(x)$

Basic Facts

- f is convex and differentiable $\Longrightarrow \partial f(x)=\{\nabla f(x)\}$.
- Any point x, there can be 0,1 , or infinitely many subgradients.
- $\partial f(x)=\emptyset \Longrightarrow f$ is not convex.

Globla Optimality Condition

Definition
A vector $g \in \mathbf{R}^{d}$ is a subgradient of $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ at x if for all z,

$$
f(z) \geqslant f(x)+g^{T}(z-x) .
$$

Corollary
If $0 \in \partial f(x)$, then x is a global minimizer of f.

Subdifferential of Absolute Value

- Consider $f(x)=|x|$

- Plot on right shows $\{(x, g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

$f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

Subgradients of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

- Let's find the subdifferential of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$ at $(3,0)$.
- First coordinate of subgradient must be 1 , from $\left|x_{1}\right|$ part (at $x_{1}=3$).
- Second coordinate of subgradient can be anything in $[-2,2]$.
- So graph of $h\left(x_{1}, x_{2}\right)=f(3,0)+g^{T}\left(x_{1}-3, x_{2}-0\right)$ is a global underestimate of $f\left(x_{1}, x_{2}\right)$, for any $g=\left(g_{1}, g_{2}\right)$, where $g_{1}=1$ and $g_{2} \in[-2,2]$.

Underestimating Hyperplane to $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

Important Properties of Subdifferential

- If $f_{1}, \ldots, f_{m}: \mathbf{R}^{d} \rightarrow \mathbf{R}$ are convex functions and $f=f_{1}+\cdots+f_{m}$, then $\partial f(x)=\partial f_{1}(x)+\cdots+\partial f_{m}(x)$.
- For $\alpha \geqslant 0, \partial(\alpha f)(x)=\alpha \partial f(x)$.

Subgradients of $f(x)=\|x\|_{1}$

- Let's find the subdifferential of $f(x)=\|x\|_{1}=\sum_{i=1}^{d}\left|x_{i}\right|$ at any given point $x^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{d}^{0}\right)$.
- By an important property of subdifferential: If $f=f_{1}+\cdots+f_{m}$, then $\partial f(x)=\partial f_{1}(x)+\cdots \partial f_{m}(x)$.
- We could calculate the subgradient of $f^{i}(x)=\left|x_{i}\right|$ and sum them up.
- The subgradient $g^{i}=\left(g_{1}^{i}, \ldots, g_{d}^{i}\right)$ of $f^{i}(x)=\left|x_{i}\right|$ at $x^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{d}^{0}\right)$ is:

$$
g_{j}^{i}=0, \quad j \neq i ; \quad g_{j}^{i}=s\left(x_{j}^{0}\right), \quad j=i,
$$

where $s(x)=\operatorname{sign}(x)$ if $x \neq 0$ and $s(x) \in[-1,1]$ if $x=0$

- We sum all the g^{i} up to get the subgradient $g=\left(g_{1}, \ldots, g_{d}\right)$ of $f(x)$ at x^{0} :

$$
g_{i}=s\left(x_{i}^{0}\right) \quad \text { for all } i
$$

Subgradient Descent

Subgradient Descent

- Suppose f is convex, and we start optimizing at x_{0}.
- Repeat
- Step in a negative subgradient direction:

$$
x=x_{0}-t g,
$$

where $t>0$ is the step size and $g \in \partial f\left(x_{0}\right)$.

- -g not a descent direction - can this work?

Convergence Theorem for Fixed Step Size

Assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem
For fixed step size t, subgradient method satisfies:

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leqslant f\left(x^{*}\right)+G^{2} t / 2
$$

Convergence Theorems for Decreasing Step Sizes

Assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem
For step size respecting Robbins-Monro conditions,

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right)=f\left(x^{*}\right)
$$

Subgradient Descent for Lasso Problem

- Lasso problem can be parametrized as

$$
\min _{w \in \mathbf{R}^{d}} J(w)=\frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{1}
$$

- Subgradients of $J(w)$ are

$$
\frac{1}{n} \sum_{i=1}^{n} 2\left\{w^{T} x_{i}-y_{i}\right\} x_{i}+\lambda s,
$$

where $s_{i}=\operatorname{sign}\left(w_{i}\right)$ if $w_{i} \neq 0$ and $s_{i} \in[-1,1]$ if $w_{i}=0$.

Subgradient Descent for Lasso Problem: Potential Issues

- Subgradient descent will work for all convex and Lipschitz continuous objective functions.
- BUT, convergence can be very slow for non-differentiable functions
- One can often find better approaches by closer examination of the objective function. For example, shooting method or projected SGD.
- Taking small steps in the direction of the (sub)gradient usually may not lead to zero coordinates.
- BUT, in practice, we can threshold small values.

Appendix: Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.

- Let $x=x_{0}-t g$, for $g \in \partial f\left(x_{0}\right)$.
- Let z be any point for which $f(z)<f\left(x_{0}\right)$.
- Then for small enough $t>0$,

$$
\|x-z\|_{2}<\left\|x_{0}-z\right\|_{2} .
$$

- Apply this with $z=x^{*} \in \arg \min _{x} f(x)$.
\Longrightarrow Appendix: Negative subgradient step gets us closer to minimizer.

Subgradient Gets Us Closer To Minimizer (Proof)

- Let $x=x_{0}-t g$, for $g \in \partial f\left(x_{0}\right)$ and $t>0$.
- Let z be any point for which $f(z)<f\left(x_{0}\right)$.
- Then

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\left\|x_{0}-t g-z\right\|_{2}^{2} \\
& =\left\|x_{0}-z\right\|_{2}^{2}-2 \operatorname{tg}^{T}\left(x_{0}-z\right)+t^{2}\|g\|_{2}^{2} \\
& \leqslant\left\|x_{0}-z\right\|_{2}^{2}-2 t\left[f\left(x_{0}\right)-f(z)\right]+t^{2}\|g\|_{2}^{2}
\end{aligned}
$$

- Consider $-2 t\left[f\left(x_{0}\right)-f(z)\right]+t^{2}\|g\|_{2}^{2}$.
- It's a convex quadratic (facing upwards).
- Has zeros at $t=0$ and $t=2\left(f\left(x_{0}\right)-f(z)\right) /\|g\|_{2}^{2}>0$.
- Therefore, it's negative for any

$$
t \in\left(0, \frac{2\left(f\left(x_{0}\right)-f(z)\right)}{\|g\|_{2}^{2}}\right) .
$$

