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Recap: Conditional Probability Models
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Conditional Probability Modeling

Input space X

Outcome space Y

Action space A= {p(y) | p is a probability distribution on Y}.
Hypothesis space F contains prediction functions f : X→A.
Prediction function f ∈ F takes input x ∈ X and produces a distribution on Y

We’ve been discussing parametric families of conditional densities

{p(y | x ,θ) : θ ∈Θ} .

These are also hypothesis spaces for conditional probability modeling.
Examples?
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Parametric Family of Conditional Densities

A parametric family of conditional densities is a set

{p(y | x ,θ) : θ ∈Θ} ,

where p(y | x ,θ) is a density on outcome space Y for each x in input space X, and
θ is a parameter in a [finite dimensional] parameter space Θ.

This is the common starting point for a treatment of classical or Bayesian statistics.
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Density vs Mass Functions

In this lecture, whenever we say “density”, we could replace it with “mass function.”

Corresponding integrals would be replaced by summations.

(In more advanced, measure-theoretic treatments, they are each considered densities w.r.t.
different base measures.)
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The Data: Assumptions So Far in this Course

Our usual setup is that (x ,y) pairs are drawn i.i.d. from PX×Y.
How have we used this assumption so far?

ties validation performance to test performance
ties test performance to performance on new data when deployed
motivates empirical risk minimization

The large majority of things we’ve learned about ridge/lasso/elastic-net regression,
optimization, SVMs, and kernel methods are true for arbitrary training data sets
D : (x1,y1) , . . . ,(xn,yn) ∈ X×Y.

i.e. D could be created by hand, by an adversary, or randomly.

We rely on the i.i.d. PX×Y assumption when it comes to generalization.
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The Data: Conditional Probability Modeling

To get generalization, we’ll still need our usual i.i.d. PX×Y assumption.

For developing the model, we’ll make some assumptions about the training data...
In most of what we’ve done before, we had no assumptions on the training data.

It’s typical (and most general) to do everything “conditional on the x ’s”
That means, we assume the x ’s are known
In particular, we do not consider them random
We don’t care how they were generated (randomly, adversarially, chosen by hand)
In other words, still no assumptions on x ’s.
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The Data: Conditional Probability Modeling

So we assume the x ’s are known.

We observe yi sampled randomly from p(y | xi ,θ), for some unknown θ ∈Θ.

We assume the outcomes y1, . . . ,yn are independent.
But not i.i.d. – Why?

Each yi may be drawn from a different distribution, depending on xi .
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Likelihood Function

Data: D= (y1, . . . , ,yn)

The probability density for our data D is

p(D | x1, . . . ,xn,θ) =

n∏
i=1

p(yi | xi ,θ).

For fixed D, the function θ 7→ p(D | x ,θ) is the likelihood function:

LD(θ) = p(D | x ,θ),

where x = (x1, . . . ,xn).
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Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) for θ in the family {p(y | x ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).

MLE corresponds to ERM for the negative log- likelihood loss (discussed previously).
The corresponding prediction function is

f̂ (x) = p(y | x , θ̂MLE).

We can think of this as a choice of a particular function from the hypothesis space

F = {p(y | x ,θ) : θ ∈Θ} .
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Bayesian Conditional Probability Models
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Bayesian Conditional Models

Input space X= Rd Outcome space Y= R

Two components to Bayesian conditional model:
A parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

A prior distribution p(θ) on θ ∈Θ.
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The Posterior Distribution

The prior distribution p(θ) represents our beliefs about θ before seeing D.

The posterior distribution for θ is

p(θ | D,x) ∝ p(D | θ,x)p(θ)

= LD(θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Posterior represents the rationally “updated” beliefs after seeing D.
Each θ corresponds to a prediction function,

i.e. the conditional distribution function p(y | x ,θ).
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Point Estimates of Parameter

Suppose for some reason we want point estimates of θ.
We can use Bayesian decision theory to derive point estimates.
As discussed last week, we may want to use

θ̂= E [θ | D,x ] (the posterior mean estimate)
θ̂=median[θ | D,x ]
θ̂= argmaxθ∈Θ p(θ | D,x) (the MAP estimate)

depending on our loss function.
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Back to the basic question

Find a function takes input x ∈ X and produces a distribution on Y?
Recall frequentist approach:

Choose family of conditional probability densities (hypothesis space).

Select one conditional probability from family, e.g. by MLE.

(MLE has nice properties, so a common choice. See advanced statistics class.)
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Bayesian Prediction Function

In Bayesian setting, there is no selection from hypothesis space.

We chose a parametric family of conditional densities

{p(y | x ,θ) : θ ∈Θ} ,

and a prior distribution p(θ) on this set.

Suppose we get an x and we need to predict a distribution for the corresponding y .

Having set our Bayesian model, there are no more decisions to make – just computation...
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The Prior Predictive Distribution

Suppose we have not yet observed any data.

In Bayesian setting, we can still produce a prediction function.

The prior predictive distribution is given by

x 7→ p(y | x) =

∫
p(y | x ;θ)p(θ)dθ.

This is an average of all conditional densities in our family, weighted by the prior.
Such an average is also called a mixture distribution.
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The Posterior Predictive Distribution

Suppose we’ve already seen data D.
The posterior predictive distribution is given by

x 7→ p(y | x ,D) =

∫
p(y | x ;θ)p(θ | D)dθ.

This is an average of all conditional densities in our family, weighted by the posterior.
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Comparison to Frequentist Approach

In Bayesian statistics we have two distributions on Θ:
the prior distribution p(θ)
the posterior distribution p(θ | D).

We also think of these as distributions on the hypothesis space

{p(y | x ,θ) : θ ∈Θ} .

In frequentist approach, we choose θ̂ ∈Θ, and predict

p(y | x , θ̂(D)).

In Bayesian approach, we integrate out over Θ w.r.t. p(θ | D) and predict with

p(y | x ,D) =

∫
p(y | x ;θ)p(θ | D)dθ
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What if we don’t want a full distribution on y?

Once we have a predictive distribution p(y | x ,D),
we can easily generate single point predictions.

x 7→ E [y | x ,D], to minimize expected square error.

x 7→median[y | x ,D], to minimize expected absolute error

x 7→ argmaxy∈Y p(y | x ,D), to minimize expected 0/1 loss

Each of these can be derived from p(y | x ,D).
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Gaussian Regression Example
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Example in 1-Dimension: Setup

Input space X= [−1,1] Output space Y= R
Given x , the world generates y as

y = w0+w1x +ε,

where ε ∼ N(0,0.22).

Written another way, the conditional probability model is

y | x ,w0,w1 ∼ N
(
w0+w1x , 0.22) .

What’s the parameter space? R2.
Prior distribution: w = (w0,w1) ∼ N

(
0, 1

2 I
)

Julia Kempe & David S. Rosenberg (CDS, NYU) DS-GA 1003 March 26, 2019 23 / 33



Example in 1-Dimension: Prior Situation

Prior distribution: w = (w0,w1) ∼ N
(
0, 1

2 I
)
(Illustrated on left)

On right, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ∼ p(w) =N
(
0, 1

2 I
)
.

Bishop’s PRML Fig 3.7
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Example in 1-Dimension: 1 Observation

On left: posterior distribution; white ’+’ indicates true parameters
On right: blue circle indicates the training observation

Bishop’s PRML Fig 3.7
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Example in 1-Dimension: 2 and 20 Observations

Bishop’s PRML Fig 3.7
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Gaussian Regression Continued
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Closed Form for Posterior

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Design matrix X Response column vector y
Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

Posterior Variance ΣP gives us a natural uncertainty measure.
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Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

If we want point estimates of w , MAP estimator and the posterior mean are given by

ŵ = µP =
(
XTX +σ2Σ−1

0
)−1

XT y

For the prior variance Σ0 =
σ2

λ I , we get

ŵ = µP =
(
XTX +λI

)−1
XT y ,

which is of course the ridge regression solution.
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Posterior Mean and Posterior Mode (MAP)

Let’s find ŵMAP another way to elaborate on connection to ridge.
Posterior density on w for Σ0 =

σ2

λ I :

p(w | D) ∝ exp

(
−
λ

2σ2 ‖w‖
2
)

︸ ︷︷ ︸
prior

n∏
i=1

exp

(
−
(yi −wT xi )

2

2σ2

)
︸ ︷︷ ︸

likelihood

To find MAP, sufficient to minimize the negative log posterior:

ŵMAP = argmin
w∈Rd

[− logp(w | D)]

= argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2

︸ ︷︷ ︸
log-likelihood

+λ‖w‖2︸ ︷︷ ︸
log-prior

Which is the ridge regression objective.
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Predictive Distribution

Given a new input point xnew, how to predict ynew ?
Predictive distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w ,D)p(w | D)dw

=

∫
p(ynew | xnew,w)p(w | D)dw

For Gaussian regression, predictive distribution has closed form.
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Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.

Closed form:

ynew | xnew,D ∼ N
(
ηnew , σ

2
new

)
ηnew = µTP xnew

σ2
new = xTnewΣPxnew︸ ︷︷ ︸

from variance in w

+ σ2︸︷︷︸
inherent variance in y
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Predictive Distributions

With predictive distributions, can give mean prediction with error bands:

Rasmussen and Williams’ Gaussian Processes for Machine Learning, Fig.2.1(b)
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