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Introduction
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Nonlinear Regression

@ Suppose we have the following regression problem:
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@ What are some options?

@ basis functions, kernel methods, trees, neural nets, ...
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Linear Model with Basis Functions

@ Choose some basis functions on input space X:

g, 8u:X—R

@ Predict with linear combination of basis functions:
M
f(x) = Z Vm&m(x)
m=1
e Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)

@ In ML parlance, basis functions are called features or feature functions.
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Not Limited to Regression

@ Linear combination of basis functions:

M
f(X) = Z Vmgm(x)
m=1

@ f(x) is a number — for regression, it's exactly what we're looking for.
@ Otherwise, f(x) is often called a score function.
@ It can be

o thresholded to get a classification
transformed to get a probability

]
o transformed to get a parameter of a probability distribution (e.g. Poisson regression)
e used for ranking search results
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Adaptive Basis Function Model

o Let's “learn” the basis functions.
@ Base hypothesis space H consisting of functions h: X — R.
e We will choose our “basis functions’ or “features’ from this set of functions.

@ An adaptive basis function expansion over H is

M
flx)= Z thm(X)v
m=1

where v, € R and h,,, € H are chosen based on training data.
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Adaptive Basis Function Model

Base hypothesis space: H of real-valued functions

@ Combined hypothesis space: Fy;:

M
m=1

Suppose we're given some data D = ((x1,y1),..., (X Vn)).

Learning is choosing vi,...,vpy € R and hy,..., Ay € H to fit D.
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Empirical Risk Minimization

o We'll consider learning by empirical risk minimization:

A

1 n
f:argminfz(’.(yi,f(xi))-
fegm M

for some loss function £(y, y).
e Write ERM objective function as

n M
J(Vl,...,V/\/l,hl,...,hM) = %ZE (y,-, Z thm(X)> .
i=1

m=1

@ How to optimize J7 i.e. how to learn?
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Gradient-Based Methods

@ Suppose our base hypothesis space is parameterized by ® = R?:

n M
1
J(Vly---yVMvely---yeM):;z e()/i, E th(X;em)>-
i—1

m=1

Can we can differentiate J w.r.t. v,,'s and 0,,,'s? Optimize with SGD?

For some hypothesis spaces and typical loss functions, yes!

@ Neural networks fall into this category! (hi,..., hy are neurons of last hidden layer.)
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What if Gradient Based Methods Don't Apply?

@ What if base hypothesis space H consists of decision trees?
@ Can we even parameterize trees with © = RP?

@ Even if we could for some set of trees,

e predictions would not change continuously w.r.t. 8 € ©,
e and so certainly not differentiable.

@ Today we'll discuss gradient boosting. It applies whenever

o our loss function is [sub]differentiable w.r.t. training predictions f(x;), and
e we can do regression with the base hypothesis space 3 (e.g. regression trees).
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Overview

o Forward stagewise additive modeling (FSAM)

o example: L2 Boosting

e example: exponential loss gives AdaBoost

e Not clear how to do it with many other losses, including logistic loss
e Gradient Boosting

e example: logistic loss gives BinomialBoost
e Variations on Gradient Boosting

o step size selection

e stochastic row/column selection
o Newton step direction

o XGBoost
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Forward Stagewise Additive Modeling J
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Forward Stagewise Additive Modeling (FSAM)

FSAM is an iterative optimization algorithm for fitting adaptive basis function models.
Start with f, =0.

After m—1 stages, we have

@ In m'th round, we want to find

o step direction h, € H (i.e. a basis function) and
o step size v; >0

@ such that
fm —Im—1 +Vihm

improves objective function value by as much as possible.
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Forward Stagewise Additive Modeling for ERM

@ Initialize f(x) =0.
Q@ Form=1to M:
0o Compute:
(Ven, him) = argmin —Zf Vi 106 +Vh(x;)
———

vERheH N
new plece

@ Set f,=fn_1+Vmh.
© Return: fy.
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Example: L? Boosting
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Example: L? Boosting

@ Suppose we use the square loss. Then in each step we minimize

2
n

J(v,h):%z Yi— | fm—1(xi) +vh(x;)

i=1 .
new piece

If 3 is closed under rescaling (i.e. if h € 3, then vh € H for all h € R), then don't need v.
@ Take v =1 and minimize
2

I =25 [ i foa00) | —hx)

i=1 .
residual

This is just fitting the residuals with least-squares regression!

If we can do regression with our base hypothesis space J, then we're set!
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Regression Stumps

@ A regression stump is a regression tree with a single split.
@ A regression stump is a function of the form h(x) = al(x; < ¢) + b1(x; > ¢).
YA

s

=Y

-2

Plot courtesy of Brett Bernstein.
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L? Boosting with Decision Stumps: Demo

o Consider FSAM with L2 loss (i.e. L? Boosting)
@ For base hypothesis space of regression stumps

o Data we'll fit with code:
) x

A
Plot courtesy of Brett Bernstein.
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https://davidrosenberg.github.io/mlcourse/Labs/gbm.py

L? Boosting with Decision Stumps: Results

Lfbast Squares From Stage 0 -> 1 (Press any key to advance)

— Fit at Stage 0

— Fitat Stage 1
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L? Boosting with Decision Stumps: Results

Lfbast Squares From Stage 2 -> 3 (Press any key to advance)

— Fit at Stage 2
— Fit at Stage 3
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L? Boosting with Decision Stumps: Results

Lfbast Squares From Stage 4 -> 5 (Press any key to advance)

— Fit at Stage 4

— Fitat Stage 5
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Example: AdaBoost
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The Classification Problem

o QOutcome space Y ={-1,1}

@ Action space A =R

@ Score function f: X — A.

@ Margin for example (x,y) is m = yf(x).

e m>0 <= classification correct
o Larger m is better.

Julia Kempe & David S. Rosenberg (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 23-24, 2019 24 /58



Margin-Based Losses for Classification

4-
Loss
=== Zero_One
=== Hinge
3-
== | ogistic
£
B2
o
-
1- \
0-
1 1 1
-2 2

Margin Om=yf(x)

Julia Kempe & David S. Rosenberg (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 23-24, 2019 25 /58



Exponential Loss

@ Introduce the exponential loss: £(y,f(x)) =exp (—yf(x)).

s- Loss
=== Zero_One
=== Hinge

=== | ogistic_Rescaled

=== Exponential

E
g4-
o
—
9=
0-
| i ] | | i
3 -2 -1 0 1 2
Margin m=yf(x)
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FSAM with Exponential Loss

Consider classification setting: Y ={—1,1}.

Take loss function to be the exponential loss:

tly, f(x)) =exp(—yf(x)).

Let H be a base hypothesis space of classifiers h: X —{—1,1}.
o (Also assume H closed under negation: h€ H{ — —h e K)

Then Forward Stagewise Additive Modeling (FSAM) reduces to a version of AdaBoost.
Proof on Spring 2017 Homework #6, Problem 4 (and see HTF Section 10.4).
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https://davidrosenberg.github.io/mlcourse/Archive/2017/Homework/hw6.pdf

Exponential Loss

o Note that exponential loss puts a very large weight on bad misclassifications.

s Loss
=== Zero_One
== Hinge

=== | ogistic_Rescaled
6-

=== Exponential

-1 0
Margin m=yf(x)
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AdaBoost / Exponential Loss: Robustness Issues

When Bayes error rate is high (e.g. P(f*(X) # Y)=10.25)

e e.g. there's some intrinsic randomness in the label
e e.g. training examples with same input, but different classifications.

(]

Best we can do is predict the most likely class for each X.

Some training predictions should be wrong,

o because example doesn’t have majority class
o AdaBoost / exponential loss puts a lot of focus on getting those right

Empirically, AdaBoost has degraded performance in situations with

e high Bayes error rate, or when there's
e high “label noise”

Logistic loss performs better in settings with high Bayes error
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FSAM for Other Loss Functions

o We know how to do FSAM for certain loss functions
e e.g square loss, absolute loss, exponential loss, ...

@ In each case, happens to reduce to another problem we know how to solve, at least
approximately.

@ However, not clear how to do FSAM in general.

e For example, logistic loss / cross-entropy loss?
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Gradient Boosting / “Anyboost” J
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FSAM lIs Iterative Optimization

@ The FSAM step

n
(Vs hm) = argmin Y €| yi, fmn1(x;) +vh(x;)
vERheH [T —
new piece
@ Hard part: finding the best step direction h.
@ What if we looked for the locally best step direction?
o like in gradient descent
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“Functional” Gradient Descent

@ We want to minimize
n

JF) =) Uy flx).

i=1
@ In some sense, we want to take the gradient w.r.t. “f"”, whatever that means.
@ J(f) only depends on f at the n training points.

o Define
f=(f(x1),....F0xa)) T

and write the objective function as

JH =3 tyf).
i=1
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Functional Gradient Descent: Unconstrained Step Direction

@ Consider gradient descent on
I = tf).
i=1
@ The negative gradient step direction at f is

—g = —V¢J(f)
= —(0gl(y1.f1),..., 05, (yn fn))

which we can easily calculate.
@ —g c R" is the direction we want to change each of our n predictions on training data.

@ Eventually we need more than just f, which is just predictions on training.
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Functional Gradient Descent: Projection Step

Unconstrained step direction is

—g=—V¢J(f) =—(0g,(y1,f1),.... 0, L (yn. fn)).

Also called the “pseudo-residuals”
o (for square loss, they're exactly the residuals)

o Find the closest base hypothesis h € J (in the {2 sense):

n

i —gi—h(x;))?.
p;lgn{i:l( gi— h(xi))

This is a least squares regression problem over hypothesis space .

Take the h € H that best approximates —g as our step direction.
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Functional Gradient Descent: Step Size

@ Finally, we choose a stepsize.

@ Option 1 (Line search):

Vm =argmin Y {y;, fm-1(x) +Vhm(x)}.

v>0 i—1

@ Option 2: (Shrinkage parameter — more common)

e We consider v =1 to be the full gradient step.
o Choose a fixed v € (0,1) — called a shrinkage parameter.
o A value of v=0.1is typical — optimize as a hyperparameter .
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The Gradient Boosting Machine Ingredients (Recap)

Take any loss function [sub]differentiable w.r.t. the prediction
Choose a base hypothesis space for regression.

Choose number of steps (or a stopping criterion).

Choose step size methodology.

Then you're good to go!
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Example: BinomialBoost
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BinomialBoost: Gradient Boosting with Logistic Loss

@ Recall the logistic loss for classification, with Y ={—1,1}:
Uy.f(x)) = log(1+e7))

@ Pseudoresidual for i'th example is negative derivative of loss w.r.t. prediction:

rp = —af(xl.) {Iog(l—i—e*y"f(x"))]

yl-e_yif(xi)

1+ e—vif(xi)
Yi
1+ evif (xi)
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BinomialBoost: Gradient Boosting with Logistic Loss

@ Pseudoresidual for ith example:

) o . 7_y,'f(X,') J— L
ri = Of(x) [IOg <1+e )} 14 erif(x)

@ So if f,,_1(x) is prediction after m—1 rounds, step direction for m'th round is

n 2
. Yi
hy, = E —— | —h(x;)| .
m al’hger;lln — [(l—f—e)’ifmﬂx;]) (X'):|

o And fi(x) = fi—1(x) +vhm(x).
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Gradient Tree Boosting
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Gradient Tree Boosting

@ One common form of gradient boosting machine takes
H ={regression trees of size J},

where J is the number of terminal nodes.
e J =2 gives decision stumps
@ HTF recommends 4 < J < 8 (but more recent results use much larger trees)

@ Software packages:

o Gradient tree boosting is implemented by the gbm package for R
@ as GradientBoostingClassifier and GradientBoostingRegressor in sklearn
o xgboost and lightGBM are state of the art for speed and performance
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GBM Regression with Stumps J

Julia Kempe & David S. Rosenberg (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 23-24, 2019 43 /58



Sinc Function: Our Dataset

60

—— sinc function

From Natekin and Knoll's "Gradient boosting machines, a tutorial"
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Minimizing Square Loss with Ensemble of Decision Stumps

10 0 10 20 30 40
1
¥
=10 0 10 20 30 40
T T

¥

-0 0 10 20 30 40
1

=10 0 10 20 30 40
1

Decision stumps with 1,10,50, and 100 steps, step size A = 1.

Figure 3 from Natekin and Knoll’'s "Gradient boosting machines, a tutorial"
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Step Size as Regularization

A < B
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c 9 c N 7
© ©
(] ()
= =
n — 0‘3 —
I I I I I I I
0 500 1500 2500
# iterations # iterations

Performance vs rounds of boosting and step size. (Left is training set, right is validation set)

Figure 5 from Natekin and Knoll’'s "Gradient boosting machines, a tutorial"
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Rule of Thumb

@ The smaller the step size, the more steps you'll need.
@ But never seems to make results worse, and often better.

@ So set your step size as small as you have patience for.
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Variations on Gradient Boosting J
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Stochastic Gradient Boosting

@ For each stage,

e choose random subset of data for computing projected gradient step.

o "Typically, about 50% of the dataset size, can be much smaller for large training set.”
e Fraction is called the bag fraction.

@ Why do this?

o Subsample percentage is additional regularization parameter — may help overfitting.
o Faster.

@ We can view this is a minibatch method.

o we're estimating the "true” step direction (the projected gradient) using a subset of data

Introduced by Friedman (1999) in Stochastic Gradient Boosting.
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http://statweb.stanford.edu/~jhf/ftp/stobst.pdf

Bag as Minibatch

@ Just as we argued for minibatch SGD,

e sample size needed for a good estimate of step direction is independent of training set size
@ Minibatch size should depend on

o the complexity of base hypothesis space

o the complexity of the target function (Bayes decision function)

@ Seems like an interesting area for both practical and theoretical pursuit.

Julia Kempe & David S. Rosenberg (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 23-24, 2019 50 /58



Column / Feature Subsampling for Regularization

@ Similar to random forest, randomly choose a subset of features for each round.

@ XGBoost paper says: “According to user feedback, using column sub-sampling prevents
overfitting even more so than the traditional row sub-sampling.”

@ Zhao Xing (top Kaggle competitor) finds optimal percentage to be 20%-100%
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Newton Step Direction

@ For GBM, we find the closest h € F to the negative gradient
—g=—VrJ(f).

This is a “first order” method.

Newton's method is a “second order method™:
e Find 2nd order (quadratic) approximation to J at f.

o Requires computing gradient and Hessian of J.

o Newton step direction points towards minimizer of the quadratic.
e Minimizer of quadratic is easy to find in closed form

Boosting methods with projected Newton step direction:

o LogitBoost (logistic loss function)
o XGBoost (any loss — uses regression trees for base classifier)
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Newton Step Direction for GBM

e Generically, second order Taylor expansion of J at f in direction r
1
J(E+0) =IO+ VIO vt e [VRI(E)]r
e For J(f) =X 7 1ty fi),
[ yi fi +g,r,+ h r
i=1
where g; =05 L(y;,fi) and h; = a?,_ﬂ(y,-,f,-).

@ Can find r that minimizes J(f+r) in closed form.

@ Can take step direction to be “projection” of r into base hypothesis space K.
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XGBoost: Objective Function with Tree Penalty Term

o Adds explicit penalty term on tree complexity to the empirical risk:

;
1 2
Q(r):yT—i-z?\;Wj,

where r € H is a regression tree from our base hypothesis space and
e T is the number of leaf nodes and
o wj is the prediction in the j'th node

@ Objective function at step m:

n

0= [gra)+ ghrx?| +Q00)
i=1

@ In XGBoost, they also use this objective to decide on tree splits

@ See XGBoost Introduction for a nice introduction.
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http://xgboost.readthedocs.io/en/latest/model.html

XGBoost: Rewriting objective function

e For a given tree, let g(x;) be x;'s node assignment and w; the prediction for node j.

@ In each step of XGBoost we're looking for a tree that minimizes

n

.
1 1
> [ngq(Xf) + thwg(x,-)} YT 50D W]
i=1 i=1

T

1
= 3 || S| a| e[
leaf node j=1 i€l; icl;
S~—~— S~—~—
G; H;

L 1 ' p

where [; ={i | q(x;) =j} is set of training example indices landing in leaf j.
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XGBoost: Simple Expression for Tree Penalty/Loss

@ Simplifies to

L 1
Z [ijijrz(HjJr?\)wjz +yT
j=1

e For fixed g(x) (i.e. fixed tree partitioning), objective minimized when leaf node values are

Wi =—Gj/ (H;+]).

e Plugging w back in, this objective reduces to

T 2

1{ G
—= T
21,_Z1 HJ-+?\+y ’

which we can think of as the loss for tree partitioning function g(x).

o If time were no issue, we could search over all trees to mininize this objective.
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XGBoost: Building Tree Using Objective Function

@ Expression to evaluate a tree's node assignment function g(x):
T 2
1& G
_z T,
2 le Hon Y

where G; = Z,e,jg,- for examples i assigned to leaf node j. And H; = Zielj h;.

@ Suppose we're considering splitting some data into two nodes: L and R.
@ Loss of tree with this one split is

1[ G? N G3

2 | HL+A Hgrp+A
@ Without the split — i.e. a tree with a single leaf node, loss is
(GL+ Gg)?
HL—I— HR +A

]+2y.

1

—5 +v.
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XGBoost: Node Splitting Criterion

@ We can define the gain of a split to be the reduction in objective between tree with and
without split:

G} n G (GL+ GRr)?

1
Gain = — — —
2| HL+A Hgr+A H +Hr+A

@ Tree building method:
e recursively choose split that maximizes the gain.

Julia Kempe & David S. Rosenberg (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 23-24, 2019 58 /58



	Introduction
	Forward Stagewise Additive Modeling 
	Example: L2 Boosting
	Example: AdaBoost
	Gradient Boosting / ``Anyboost''
	Example: BinomialBoost
	Gradient Tree Boosting
	GBM Regression with Stumps
	Variations on Gradient Boosting

