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Latent Variable Models J

Julia Kempe & David S. Rosenberg (New York U DS-GA 1003 / CSCI-GA 2567 May 7, 2019 3/52



General Latent Variable Model

@ Two sets of random variables: z and x.
@ z consists of unobserved hidden variables.
@ x consists of observed variables.

@ Joint probability model parameterized by 6 € ©:

p(x,z[0)

Definition
A latent variable model is a probability model for which certain variables are never observed. J

e.g. The Gaussian mixture model is a latent variable model.
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Complete and Incomplete Data

@ Suppose we observe some data (xq,...,x,).

@ To simplify notation, take x to represent the entire dataset
X=(x1,...,Xn),

and z to represent the corresponding unobserved variables
z=(z1,...,2n).

@ An observation of x is called an incomplete data set.

@ An observation (x,z) is called a complete data set.
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Our Objectives

Learning problem: Given incomplete dataset x, find MLE

6 = argmaxp(x | 0).
0

Inference problem: Given x, find conditional distribution over z:

p(z]x,0).

For Gaussian mixture model, learning is hard, inference is easy.

For more complicated models, inference can also be hard. (See DSGA-1005)
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Log-Likelihood and Terminology

@ Note that
argmaxp(x | 0) = argmax[logp(x | 0)].
0 0

e Often easier to work with this “log-likelihood".
@ We often call p(x) the marginal likelihood,
e because it is p(x,z) with z “marginalized out™

p(x) =) plx,2)

o We often call p(x, z) the joint. (for “joint distribution”)
@ Similarly, log p(x) is the marginal log-likelihood.
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EM Algorithm (and Variational Methods) — The Big Picture }
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Big Picture ldea

@ Want to find 8 by maximizing the likelihood of the observed data x:

6 = argmax [log p(x | 8)]
0€©

@ Unfortunately this may be hard to do directly.
o Approach: Generate a family of lower bounds on 0 — logp(x | 0).

@ For every g € Q, we will have a lower bound:
logp(x10) > Lq(0) Vo €O
o We will try to find the maximum over all lower bounds:

0 = argmax
0€cO

sup £4(0)
qeqQ

Julia Kempe & David S. Rosenberg (New York U DS-GA 1003 / CSCI-GA 2567 May 7, 2019 9/52



The Marginal Log-Likelihood Function
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The Maximum Likelihood Estimator
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Lower Bounds on Marginal Log-Likelihood
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Supremum over Lower Bounds is a Lower Bound
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Parameter Estimate: Max over all lower bounds
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The Expected Complete Data Log-Likelihood

o Marginal log-likelihood is hard to optimize:

max logp(x|0)

o Typically the complete data log-likelihood is easy to optimize:

max log p(x,z|0)

o What if we had a distribution g(z) for the latent variables z7
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The Expected Complete Data Log-Likelihood

Suppose we have a distribution g(z) on latent variable z.
@ Then maximize the expected complete data log-likelihood:

maqu Jogp(x,z|0)

If g puts lots of weight on actual z, this could be a good approximation to MLE

EM assumes this maximization is relatively easy.
(This is true for GMM.)
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Math Prerequisites
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f :R — R is a convex function, and x is a random variable, then
Ef(x) > f(Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is
a constant).

v

e eg. f(x)=x?is convex. So Ex? > (Ex)?. Thus

Var (x) = Ex® — (Ex)? > 0.
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and q are?

@ The Kullback-Leibler or “KL” Divergence is defined by
p(x)
KL( = x)log ——.
pllq) X%Cp( 8 )
(Assumes g(x) =0 implies p(x) =0.)
o Can also write this as

KL(pllg) = Ex-plog plx)

q(x)’
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Gibbs Inequality (KL(pl||g) = 0 and KL(p||p) =0)

Theorem (Gibbs Inequality)
Let p(x) and g(x) be PMFs on X. Then

KL(pllq) =0,
with equality iff p(x) = q(x) for all x € X.

e KL divergence measures the “distance” between distributions.
o Note:

o KL divergence not a metric.
e KL divergence is not symmetric.
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Gibbs Inequality: Proof

KL(p||q)

@ Since —log is strictly convex, we have strict equality iff g(x)/p(x) is a constant, which

implies g=p .
Julia Kempe & David S. Rosenberg (New York U
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The ELBO: Family of Lower Bounds on logp(x | 0) J
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Lower Bound for Marginal Log-Likelihood

o Let g(z) be any PMF on Z, the support of z:

logp(x|6) = log [Z plx,z | e)]
= log [Zq < plx.2| 9))] (log of an expectation)

> Zq(z) log <>;(ZZ§6)> (expectation of log)

£(q,0)

@ Inequality is by Jensen’s, by concavity of the log.

This inequality is the basis for “variational methods”, of which EM is a basic example.
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The ELBO

e For any PMF q(z), we have a lower bound on the marginal log-likelihood

log p(x | ) > Zq <X2|9)>

q(z)

£(q,0)

e Marginal log likelihood log p(x | 0) also called the evidence.
@ L(q,0) is the evidence lower bound, or “ELBO".

In EM algorithm (and variational methods more generally), we maximize £(q,0) over g and ©.
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MLE, EM, and the ELBO

o For any PMF g(z), we have a lower bound on the marginal log-likelihood
logp(x |0) > L(q,0).
@ The MLE is defined as a maximum over 0:

BmLe = argmax[log p(x | 0)].
0
e In EM algorithm, we maximize the lower bound (ELBO) over 0 and ¢:
q

Bem ~ arg max [maxL(q,e)]
0

@ In EM algorithm, g ranges over all distributions on z.
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A Family of Lower Bounds

@ For each g, we get a lower bound function: logp(x|0) > £L(q,0) V6.

@ Two lower bounds (blue and green curves), as functions of ©:

o Ideally, we'd find the maximum of the red curve. Maximum of green is close.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

Julia Kempe & David S. Rosenberg (New York U DS-GA 1003 / CSCI-GA 2567 May 7, 2019 26 /52



EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,0).
e EM Algorithm (high level):

© Choose initial 0°'9.

Q Let g* =argmax, £(q,0°9)

© Let 0" = argmaxgy £(g*,0°4).

© Go to step 2, until converged.
o Will show: p(x|6mW) > p(x | 6°!d)

e Get sequence of 0’s with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

Inp(X[6)

gold gnew

O Start at 6°d.

O Find g giving best lower bound at 6° — £(q,0).

© 0" =argmaxg £(q,0).

From Bishop's Pattern recognition and machine learning, Figure 9.14.

Julia Kempe & David S. Rosenberg (New York U DS-GA 1003 / CSCI-GA 2567

May 7, 2019

28 /52



EM: Next Steps

@ In EM algorithm, we need to repeatedly solve the following steps:
o argmax, £(q,0), for a given 0, and
e argmaxg £(q,0), for a given q.

@ We now give two re-expressions of ELBO £(gq,0) that make these easy to compute...
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ELBO in Terms of KL Divergence and Entropy
o Let's investigate the lower bound:
L(q,0) = Iog<pxz|e>
q(z
_ Iog<pz|x9 x|6)>
( |

0)
plz]x, )—l—Zq Jlogp(x|0)

9) +logp(x0)

z
= z)log

q(z
= Pz x,

@ Amazing! We get back an equality for the marginal likelihood:

logp(x 10) =L(q,0)+KL[q(z),p(z]x,0)]
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Maximizing over q for fixed 6.

@ Find g maximizing

L(q,0) = —KLI[g(z),p(z|x,0)]+logp(x|6)
——

no g here

@ Recall KL(p||g) >0, and KL(p||p) =0.
@ Best gis g*(z) = p(z] x,0) and

£(q",0) =—KL[p(z|x,6),p(z|x,6)]+logp(x|6)

=0

@ Summary:
logp(x|0) =supL(q,0) VO
q

@ For any 0, sup is attained at g(z) = p(z|x,0).
DS-GA 1003 / CSCI-GA 2567 May 7, 2019
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Marginal Log-Likelihood IS the Supremum over Lower Bounds

sup is over all distributions on z

[Gz)ﬁ /03 P()Cle) = S:i,P[' (1’9)




Maximum of ELBO is MLE

@ Suppose we find a maximum of £(q,0) over all distributions g on z and all 6 € ©:
L(g*,0%) =supsupL(q,0).
0 q
(where of course g*(z) = p(z | x,0%).)

e Claim: ©* is a maximizes logp(x | 0).

@ Proof: Trivial, since logp(x|0) =sup,£(q,0).
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Summary: Maximizing over q for fixed 8 = 0°9.

At given 6 = 0°9, want to find g giving best lower bound.
Answer is ¢* = p(z | x,8°!).
This gives lower bound £(g*,0) that is tight (equality) at 6°/

logp(x | 0°9) = £(g*,0°) (tangent at 6°'9).
@ And elsewhere, of course, £(g*,0) is just a lower bound:

logp(x|6) >L(g",0) VO
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Tight lower bound for any chosen 0

Inp(X]0)

gold gnew

For 8°Y, take gq(z) = p(z| x,0°9). Then
O logp(x|06°d) =L(q,0°). [Lower bound is tight at 6°9]
Q logp(x|0) > L(q,0) vO. [Global lower bound].

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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Maximizing over 0 for fixed g

e Consider maximizing the lower bound £(q,0):

$(.0) = ¥ qle)is Pz

q(z)
= Zq )logp(x,z|0) Zq )log q(z
E[complete data log-likelihood] no O here

e Maximizing £(q,0) equivalent to maximizing E [complete data log-likelihood] (for fixed q).
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General EM Algorithm

@ Choose initial 8°9,
@ Expectation Step
o Let g*(z) = p(z | x,0°¢). [¢* gives best lower bound at 0°']

o Let
J10)= 147,00 = ¥ (z)iog (221

expectation w.r.t. z~g*(z)

© Maximization Step
"™ = argmax J(0).
)
[Equivalent to maximizing expected complete log-likelihood.]

© Go to step 2, until converged.
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Does EM Work?
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EM Gives Monotonically Increasing Likelihood: By Picture

001d grew

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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EM Gives Monotonically Increasing Likelihood: By Math

© Start at 0°9,
Q Choose g*(z) = argmax, L(q, 0°d). We've shown

log p(x |0°) = £(q*,0°)
© Choose 0™ = argmaxg £(g*,0). So
L(q*'eneW) > L(q*,GOId).
Putting it together, we get

log p(x | 6"%) L(g*,0™%) L is a lower bound

>
> L(g*,0%) By definition of 0"
= logp(x|6°9) Bound is tight at 9°9.
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Convergence of EM

@ Let 0, be value of EM algorithm after n steps.

@ Define “transition function” M(-) such that 6,1 = M(0,).

@ Suppose log-likelihood function £(0) =logp(x | 0) is differentiable.

@ Let S be the set of stationary points of £(0). (i.e. Vgl(0)=0)
Theorem

Under mild regularity conditions®, for any starting point 0g,
@ lim,_0,=0" for some stationary point 0* € S and
@ 0% is a fixed point of the EM algorithm, i.e. M(0*)=0*. Moreover,

o {(0,) strictly increases to £(0*) as n — oo, unless 0, = 0*.

4For details, see “Parameter Convergence for EM and MM Algorithms” by Florin Vaida in
Statistica Sinica (2005). http://www3.stat.sinica.edu.tw/statistica/oldpdf/a15n316.pdf
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Variations on EM
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EM Gives Us Two New Problems

@ The "E" Step: Computing

plx.z| 9))

J(0):=L(q"0)=) q*(z)log ( 7 (2)

@ The "M” Step: Computing
0" = argmax J(0).
0

o Either of these can be too hard to do in practice.
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Generalized EM (GEM)

@ Addresses the problem of a difficult “M” step.
@ Rather than finding

enew

=argmaxJ(0),
0

find any 06" for which
J(enew) >J(90|d)
@ Can use a standard nonlinear optimization strategy
e e.g. take a gradient step on J.

@ We still get monotonically increasing likelihood.
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EM and More General Variational Methods

@ Suppose “E” step is difficult:
o Hard to take expectation w.r.t. g*(z) = p(z | x,0°9).

@ Solution: Restrict to distributions Q that are easy to work with.

@ Lower bound now looser:

q* = argminKL[q(z), p(z | x,0°%)]
qeQ
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EM in Bayesian Setting

@ Suppose we have a prior p(0).
e Want to find MAP estimate: Oyap = argmaxg p(0 | x):

p(0[x) = p(x|0)p(0)/p(x)
logp(0|x) = logp(x|0)+logp(6)—logp(x)

@ Still can use our lower bound on log p(x, 0).

J(0):=L(q",0) =) q’(2)log (P(XZ|9)>

q*(z)
@ Maximization step becomes

0"W — argmax[J(0) +log p(0)]
0

@ Homework: Convince yourself our lower bound is still tight at 6.
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Summer Homework: Gaussian Mixture Model (Hints) J
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Homework: Derive EM for GMM from General EM Algorithm

@ Subsequent slides may help set things up.
o Key skills:

o MLE for multivariate Gaussian distributions.
o Lagrange multipliers
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Gaussian Mixture Model (k Components)

o GMM Parameters

Cluster probabilities:  7w=(7my,...,7)
Cluster means: w=(M1,..., L)
Cluster covariance matrices: YT =(%y,... %)

o Let 0= (m,uX).
e Marginal log-likelihood

k
logp(x |0) = log{anN(xmz,zz)}
z=1
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q*(z) are “Soft Assignments”

@ Suppose we observe n points: X = (xi,...,x,) € R™9
o Let z1,...,z, €{1,..., k} be corresponding hidden variables.

o Optimal distribution g* is:
q°(z) = pl(z|x,0).
e Convenient to define the conditional distribution for z; given x; as

Y= plz=jlx)
N (xi | 1, Zj)
25:1 TN (X | He, Ze)
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Expectation Step

@ The complete log-likelihood is

|ng(X,Z | 9) = Z|0g [WZN(Xi | quZZ)]

n

= Z Iothz—HOgN(Xi | }’LZIZZ)

i=1

simplifies nicely

@ Take the expected complete log-likelihood w.r.t. g*:

J(0) Zq z)logp(x,z16)

ZZY{ llog 7t; +log N (x; | wj, Z;)]

i=1 j=1
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Maximization Step

e Find 6* maximizing J(0):

n
new __ 1 c..
He = YiXi
c .
i=1
1 n
new c T
= 2 (Xi — umLE) (X; — MLE)
€i=1
n
new c
T = —,
¢ n

for each c=1,... k.
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