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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Conditional Probability Models: Concept Check

Conditional Probability Models

MLE Learning Objectives

• Define the likelihood of an estimate of a probability distribution for some data D.

• Define a parameteric model, and some common parameteric families.

• Define the MLE for some parameter θ of a probability model.

• Be able to find the MLE using first order conditions on the log-likelihood.

Conditional Probability Models

• Describe the basic structure of a linear probabilistic model, in terms of (i) a parameter
θ of the probablistic model, (ii) a linear score function, (iii) a transfer function (kin
to a ”response function” or ”inverse link” function, though we’ve relaxed requirements
on the parameter theta).
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• Explain how we can use MLE to choose w, the weight vector in our linear function (in
(ii) above).

• Give common transfer functions for (i) bernoulli, (ii) poisson, (iii) gaussian, and (iv)
categorical distributions. Explain why these common transfer functions make sense (in
terms of their codomains).

• Explain the equivalence of EMR and MLE for negative log-likelihood loss.

MLE/Conditional Probability Model Concept Check Question

1. In each of the following, assume X1, . . . , Xn are an i.i.d. sample from the given distri-
bution.

(a) Compute the MLE for p assuming each Xi ∼ Geom(p) with PMF fX(k) = (1 −
p)k−1p for k ∈ Z≥1.

(b) Compute the MLE for λ assuming each Xi ∼ Exp(λ) with PDF fX(x) = λe−λx.

Solution.

(a) The likelihood L is given by

L(p;x1, . . . , xn) =
n∏
i=1

(1− p)xi−1p

giving a log-likelihood

logL(p;x1, . . . , xn) = n log p+

(
n∑
i=1

xi − 1

)
log(1− p).

Differentiating gives

d

dp
logL(p;x1, . . . , xn) =

n

p
−
∑n

i=1 xi − 1

1− p
.

Solving for a critical point we get

d

dp
logL(p;x1, . . . , xn) = 0 ⇐⇒ 1

n

n∑
i=1

xi =
1

p
⇐⇒ p =

n∑n
i=1 xi

.

By the first or second derivative tests, this is the maximum. Thus the answer is

p̂MLE =
n∑n
i=1 xi

.
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(b) The likelihood L is given by

L(λ;x1, . . . , xn) =
n∏
i=1

λe−λxi

giving a log-likelihood

logL(λ;x1, . . . , xn) = n log λ− λ
n∑
i=1

xi.

Differentiating gives

d

dp
logL(p;x1, . . . , xn) =

n

λ
−

n∑
i=1

xi.

Solving for a critical point we get

d

dp
logL(p;x1, . . . , xn) = 0 ⇐⇒ λ =

1

n

n∑
i=1

xi.

By the first or second derivative tests, this is a maximum. Thus the answer is

λ̂MLE =
n∑n
i=1 xi

.

2. We want to fit a regression model where Y |X = x ∼ Unif([0, ew
T x]) for some w ∈ Rd.

Given i.i.d. data points (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R, give a convex optimization
problem that finds the MLE for w.

Solution. The likelihood L is given by

L(w;x1, y1, . . . , xn, yn) =
n∏
i=1

1(yi ≤ ew
T xi)

ewT xi
.

Taking logs we get

−
n∑
i=1

wTxi = −wT
(

n∑
i=1

xi

)
if yi ≤ exp(wTxi) for all i, or −∞ otherwise. Thus we obtain the linear program

minimize wT

(
n∑
i=1

xi

)
subject to log(yi) ≤ wTxi for i = 1, . . . , n.
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3. Explain why softmax is related to computing the maximum of a list of values.

Solution. Let x1, . . . , xn ∈ R. Let ArgMax(x1, . . . , xn) denote a 1-hot encoding of the
argmax function:

ArgMax(x1, . . . , xn) =

(
1(arg max

i
xi = 1), . . . ,1(arg max

i
xi = n)

)
.

Recall that softmax has the following definition:

softmaxλ(x1, . . . , xn) =
1∑n

i=1 e
λxi

(
eλx1 , . . . , eλxn

)
,

where λ > 0 is a fixed parameter. We claim that softmax is a differentiable approx-
imation to ArgMax. Consider what happens when we let xj → ∞ while keeping the
other values fixed. Then

eλxj∑n
i=1 e

λxi
→ 1

and
eλxk∑n
i=1 e

λxi
→ 0

for all k 6= j. For example, suppose x1 = 1, x2 = −3, x3 = 5. Then

softmax1(1,−3, 5) = (0.0180, 0.0003, 0.9817)

while
ArgMax(1,−3, 5) = (0, 0, 1).

4. Suppose x has a Poisson distribution with unknown mean θ:

p(x|θ) =
θx

x!
exp(−θ), x = 0, 1, · · ·

Let the prior for θ be a gamma distribution:

p(θ|α, β) =
βαθα−1

Γ(α)
exp(−βθ), θ > 0

where Γ is the gamma function. Show that, given an observation x, the posterior
p(θ|x, α, β) is a gamma distribution with updated parameters (α′, β′) = (α+ x, β+ 1).
What does this tell you about the Poisson and gamma distributions?

Solution. From Bayes’ theorem1, we have:

p(θ|x) ∝ p(x|θ)p(θ)
∝ (θx exp(−θ))

(
θα−1 exp(−βθ)

)
= θx+α−1 exp (−(β + 1)θ))

∝ G(α + x, β + 1)

1Actually from Roman Garnett, from whom this problem was taken.
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This shows that the gamma is the conjugate prior to the Poisson. Also, note here we
exploit a common trick: we manipulate the numerator, ignoring constants independent
of θ. If we can recognize the functional form as belonging to a distribution family we
know, we can simply identify the parameters and trust that the distribution normalizes!
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