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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Bayesian Methods and Regression: Concept Check

Bayesian Methods and Regression

Bayesian Methods and Regression Learning Objectives

• (Recap) Recall the basic Bayesian setup (likelihood and prior), and be able to write
the posterior distribution using proportionality – (see slide 15 for Gaussian Example).

• Explain the difference between the posterior predictive distribution function and the
MAP or posterior mean estimator.

• Be able to show the relationship between Gaussian regression and ridge regression.

• Explain what a predictive distribution is, and how it gives additional information
(relative to the prediction functions we’ve learned in our ridge/lasso homework, for
example).
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Bayesian Methods and Regression Concept Check Questions

1. (From DeGroot and Schervish) Let θ denote the proportion of registered voters in a
large city who are in favor of a certain proposition. Suppose that the value of θ is
unknown, and two statisticians A and B assign to θ the following different prior PDFs
ξA(θ) and ξB(θ), respectively:

ξA(θ) = 2θ for 0 < θ < 1,
ξB(θ) = 4θ3 for 0 < θ < 1.

In a random sample of 1000 registered voters from the city, it is found that 710 are in
favor of the proposition.

(a) Find the posterior distribution that each statistician assigns to θ.

(b) Find the Bayes estimate of θ (minimizer of posterior expected loss) for each statis-
tician based on the squared error loss function.

(c) Show that after the opinions of the 1000 registered voters in the random sample
had been obtained, the Bayes estimates for the two statisticians could not possibly
differ by more than 0.002, regardless of the number in the sample who were in
favor of the proposition.

Solution. Note that both prior distributions are from the Beta family.

(a) We have
ξA(θ|x) ∝ f(x|θ)ξA(θ) ∝ θ711(1− θ)290

and
ξB(θ|x) ∝ f(x|θ)ξB(θ) ∝ θ713(1− θ)290.

Thus the posteriors from A and B are both beta with parameters (712, 291) and
(714, 291), respectively.

(b) The respective means are 712
1003

and 714
1005

.

(c) In general the two means are given by

a+ 2

1003
and

a+ 4

1005
.

The difference is less than 2/1000 = .002.

2. Two statistics students decide to compute 95% confidence intervals for the distribution
parameter θ using an i.i.d. sample X1, . . . , Xn. Student B uses Bayesian methods to
find a 95% credible set [LB, RB] for θ. Student F uses frequentist methods to find a
95% confidence interval [LF , RF ] for θ. Both conclude that parameter θ is in their
respective intervals with probability at least .95. Who is correct? Explain.
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Solution. The frequentist student is totally incorrect, since they have misunderstood
what a frequentist confidence interval is. Using frequentist methodology, θ is not a
random variable, so it doesn’t make sense to say it lies in some fixed interval [LF , RF ].
The correct interpretation is that if independent experiments like this were repeated,
then at least 95% of the time [LF , RF ] will contain θ. That is, the interval is random
not θ.

We can say that the Bayesian student is consistent. Recall that to compute the credible
set, the Bayesian student had to introduce some prior distribution π on θ. What we can
say is if someone believes π is correct, then it is rational, given the data, to conclude
that θ will lie in the posterior credible set with probability 95%.

3. Suppose θ has prior distribution Beta(a, b) for some a, b > 0. Given θ, suppose we
make independent coin flips with heads probability θ. Find values of a, b and the coin
flips so that the posterior variance is larger than the prior variance. [Hint: Recall that
a Beta(a, b) random variable has variance given by

ab

(a+ b)2(a+ b+ 1)
.

Try b = 1.]

Solution. As hinted, let’s try a = 10, b = 1 and 9 coin flips all landing tails. The prior
variance is given by

10 · 1
(10 + 1)2(10 + 1 + 1)

=
5

726
≈ .0069

while the posterior variance is given by

10 · 10

(10 + 10)2(10 + 10 + 1)
=

1

84
≈ .0119.

4. Fix σ2 > 0. Let w, taking values in Rd, have prior distribution N (µ0,Σ0). Conditional
on w and x1, . . . , xn ∈ R2 suppose that y1, . . . , yn are i.i.d. with yi ∼ N (wTxi, σ

2). Let
N (µ1,Σ1) denote the posterior distribution of w given the dataD = {(x1, y1), . . . , (yn, yn)}.

(a) Given a new x-value you want to forecast y to minimize the expected square loss.
That is, we want to find

ŷ = arg min
y

Ey′(y − y′)2,

where y′ has the predictive distribution given x and D. What is ŷ, and what is
the associated expected loss Ey′(ŷ − y′)2?

(b) What types of values for σ, Σ0, n will lead to the prior exerting a lot of influence
on our prediction?
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(c) We saw that the Bayesian approach to Gaussian linear regression corresponds to
ridge regression. What values in the Bayesian approach correspond to a large
amount of regularization?

Solution.

(a) We have ŷ = µT
1 x with expected loss xTΣ1x + σ2, the mean and variance of the

predictive distribution.

(b) i. High σ meaning low certainty in data.

ii. Small Σ0 meaning high certainty in prior. A covariance matrix is small if its
eigenvalues are small.

iii. Small n meaning not a lot of data to learn from.

(c) Small Σ0 meaning high certainty in prior.

5. Suppose you are using Bayesian techniques to fit a Poisson regression model. Condi-
tional on x,w, we have y ∼ Pois(ew

T x). A colleague, working with his own data set
and prior, has given you a function f that returns i.i.d. samples from his posterior
distribution on w. Give pseudocode that, given x, lets you sample from the predictive
distribution of y given x.

Solution. Pseudocode follows:

(a) Draw w from f .

(b) Draw y from Pois(ew
T x).

(c) Return y.
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