Week 4 Lecture: Concept Check Exercises

Convexity

1. If \(A, B \subseteq \mathbb{R}^n \) are convex, then \(A \cap B \) is convex.

 \textit{Solution.} Let \(x, y \in A \cap B \) and \(t \in (0, 1) \). Since \(A, B \) are convex, we have
 \[
 (1-t)x + ty \in A \quad \text{and} \quad (1-t)x + ty \in B.
 \]
 Thus \((1-t)x + ty \in A \cap B \).

2. Let \(f, g : \mathbb{R}^n \to \mathbb{R} \) be convex. Show that \(af + bg \) is convex if \(a, b \geq 0 \).

 \textit{Solution.} Let \(x, y \in \mathbb{R}^n \) and \(\theta \in (0, 1) \). Then
 \[
 (af + bg)((1-\theta)x + \theta y) = af((1-\theta)x + \theta y) + bg((1-\theta)x + \theta y)
 \leq a[(1-\theta)f(x) + \theta f(y)] + b[(1-\theta)g(x) + \theta g(y)]
 = (1-\theta)(af + bg)(x) + \theta(af + bg)(y).
 \]

3. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and differentiable. Prove that if \(\nabla f(x) = 0 \) then \(x \) is a global minimizer.

 \textit{Solution.} Suppose \(\nabla f(x) = 0 \). The gradient (or first-order) characterization of convexity says
 \[
 f(y) \geq f(x) + \nabla f(x)^T(y - x)
 \]
 for all \(y \). If \(\nabla f(x) = 0 \) then this says \(f(y) \geq f(x) \) for all \(x \).

4. Prove that if \(f : \mathbb{R}^n \to \mathbb{R} \) is strictly convex and \(x \) is a global minimizer, then it is the unique global minimizer.

 \textit{Solution.} Suppose \(y \) is also a global minimizer with \(y \neq x \). Then
 \[
 f((y + x)/2) < f(y)/2 + f(x)/2 = f(x)
 \]
 contradicting the fact that \(f(x) \) was a global minimizer.

5. Prove that any affine function \(f : \mathbb{R}^n \to \mathbb{R} \) is both convex and concave.

 \textit{Solution.} Recall that \(f \) has the form \(f(x) = w^T x + b \) where \(w \in \mathbb{R}^n \) and \(b \in \mathbb{R} \). Then, for \(x, y \in \mathbb{R}^n \) and \(\theta \in (0, 1) \),
 \[
 f((1-\theta)x + \theta y) = w^T((1-\theta)x + \theta y) + b = (1-\theta)(w^T x + b) + \theta(w^T y + b) = (1-\theta)f(x) + \theta f(y).
 \]
 This shows \(f \) is convex. But the same holds if we replace \(w \) with \(-w \) and \(b \) with \(-b \). Hence \(f \) is also concave.
6. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and let \(g : \mathbb{R}^m \to \mathbb{R}^n \) be affine. Then \(f \circ g \) is convex.

Solution. Write \(g(x) = Ax + b \) where \(A \in \mathbb{R}^{n \times m} \) and \(b \in \mathbb{R}^n \). For \(x, y \in \mathbb{R}^m \) and \(t \in (0, 1) \) we have

\[
\begin{align*}
f(g((1 - t)x + ty)) &= f((1 - t)(Ax + b) + t(Ay + b)) \\
&\leq (1 - t)f(Ax + b) + tf(Ay + b) \\
&= (1 - t)f(g(x)) + tf(g(y)).
\end{align*}
\]

7. (**)

(a) Let \(f : \mathbb{R} \to \mathbb{R} \) be convex. Show that \(f \) has one-sided left and right derivatives at every point.

(b) Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex. Show that \(f \) has one-sided directional derivatives at every point.

(c) Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex. Show that if \(x \) is not a minimizer of \(f \) then \(f \) has a descent direction at \(x \) (i.e., a direction whose corresponding one-sided directional derivative is negative).

Solution. We first prove the following lemma.

Lemma 1. If \(f : \mathbb{R} \to \mathbb{R} \) is convex and \(x < y < z \) then

\[
\frac{f(y) - f(x)}{y - x} \leq \frac{f(z) - f(x)}{z - x}.
\]

Proof. Let \(t \in (0, 1) \) satisfy \((1 - t)x + tz = y \). By convexity we have

\[
f(y) = f((1 - t)x + tz) \leq (1 - t)f(x) + tf(z)
\]

giving

\[
\frac{f(y) - f(x)}{y - x} \leq \frac{(1 - t)f(x) + tf(z) - f(x)}{(1 - t)x + tz - x} = \frac{t(f(z) - f(x))}{t(z - x)} = \frac{f(z) - f(x)}{z - x}.
\]

(a) For the right derivative, we will show

\[
\lim_{y \searrow x} \frac{f(y) - f(x)}{y - x} = \inf_{y > x} \frac{f(y) - f(x)}{y - x} =: L.
\]

Fix \(\epsilon > 0 \) and choose \(y' > x \) so that

\[
\frac{f(y') - f(x)}{y' - x} < L + \epsilon.
\]
Letting $\delta = y' - x$, the lemma shows that
\[
\frac{f(y) - f(x)}{y - x} < L + \epsilon
\]
for any $y < x + \delta$ proving the limit exists.

For the left derivative, we could repeat the above, or note that $g(t) = 2x - t$ is affine, so $f \circ g$ is convex. By the above
\[
\lim_{y \downarrow x} \frac{f(g(y)) - f(g(x))}{y - x} = \lim_{y \downarrow x} \frac{f(2y) - f(y)}{y - x} = \lim_{h \downarrow 0} \frac{f(x - h) - f(x)}{h}
\]
exists, where $h = y - x$. This proves the left derivative exists as well.

(b) Fix $x, v \in \mathbb{R}^n$ and let $g : \mathbb{R} \to \mathbb{R}^n$ be defined by $g(t) = x + tv$. Then $f \circ g$ is convex, and thus the previous part applies. But the right derivative of g at 0 is the one-sided directional derivative of f at x in the direction v:
\[
\lim_{h \downarrow 0} \frac{f(g(h)) - f(g(0))}{h} = \lim_{h \downarrow 0} \frac{f(x + hv) - f(x)}{h}.
\]

(c) Let y be a minimizer of f and let $g(t) = x + t(y - x)$. By the arguments in the first part above, the value
\[
\frac{f(g(1)) - f(g(0))}{1 - 0} = f(y) - f(x) < 0
\]
is an upper bound on the right derivative of g at 0. But this is a directional derivative, by the argument in the second part above.

Convex Optimization Problems

1. Suppose there are mn people forming m rows with n columns. Let a denote the height of the tallest person taken from the shortest people in each column. Let b denote the height of the shortest person taken from the tallest people in each row. What is the relationship between a and b?

 Solution. Let H_{ij} denote the height of the person in row i and column j. Then
\[
a = \max_j \min_i H_{ij} \leq \min_i \max_j H_{ij} = b,
\]
by the max-min inequality.

2. Let $x_1, \ldots, x_n \in \mathbb{R}^d$ be given data. You want to find the center and radius of the smallest sphere that encloses all of the points. Express this problem as a convex optimization problem.
Solution.

\[\min_{r,c} \ r \]
subject to \[\|x_i - c\|_2 \leq r \quad \text{for} \ i = 1, \ldots, n. \]

This problem is convex since norms are convex, so \(f_i(c) = \|x_i - c\|_2 \) is convex (composition of convex with affine).

3. Suppose \(x_1, \ldots, x_n \in \mathbb{R}^d \) and \(y_1, \ldots, y_n \in \{-1, 1\} \). Here we look at \(y_i \) as the label of \(x_i \).

We say the data points are linearly separable if there is a vector \(v \in \mathbb{R}^d \) and \(a \in \mathbb{R} \) such that \(v^T x_i > a \) when \(y_i = 1 \) and \(v^T x_i < a \) for \(y_i = -1 \). Give a method for determining if the given data points are linearly separable.

Solution. Solve the hard-margin SVM problem

\[
\min_{w,b} \quad \|w\|_2^2 \\
\text{subject to} \quad y_i(w^T x_i + b) \geq 1 \quad \text{for all} \ i = 1, \ldots, n.
\]

If the resulting problem is feasible, then the data is linearly separable.

4. Consider the Ivanov form of ridge regression:

\[
\min\|Ax - y\|_2^2 \\
\text{subject to} \quad \|x\|_2^2 \leq r^2,
\]

where \(r > 0, \ y \in \mathbb{R}^m \) and \(A \in \mathbb{R}^{m \times n} \) are fixed.

(a) What is the Lagrangian?

(b) What do you get when you take the supremum of the Lagrangian over the feasible values for the dual variables?

Solution.

(a) \(L(x, \lambda) = \|Ax - y\|_2^2 + \lambda(\|x\|_2^2 - r^2) \). Note that this is a shifted version of the Tikhonov objective.

(b)

\[
\sup_{\lambda \geq 0} L(x, \lambda) = \begin{cases}
+\infty & \text{if} \ \|x\|_2^2 > r^2, \\
\|Ax - y\|_2^2 & \text{otherwise}.
\end{cases}
\]

Note that the original Ivanov minimization is then just

\[
\inf_x \sup_{\lambda \geq 0} L(x, \lambda).
\]