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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Boosting: Concept Check

Boosting Learning Objectives

• Compare learning a linear model on a fixed set of basis functions on the input space,
and an ”adaptive basis function model” where the basis functions are learned.

• In particular, explain the ”recipe” for an adaptive basis function model in terms of the
base hypothesis space, and combined hypothesis space.

• Give psuedo-code for forward stagewise additive modeling (FSAM).

• Give the ingredients for gradient boosting machines; in particular, be able to explain
why we need a [sub]differentiable loss function w.r.t. the prediction.

• Explain how gradient boosting uses ”functional” gradient descent - i.e. learning the
basis function (i.e. function in the base hypothesis space) that is closest to the negative
gradient step direction given the current prediction function.
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• Explain options for step sizes (line search and shrinkage parameter/learning rate).

• Explain variations on gradient boosting (stochastic gradient boosting, and column
subsampling).

1. (?) Show the exponential margin loss is a convex upper bound for the 0− 1 loss.

Solution. Recall that the exponential margin loss is given by `(y, a) = e−ya where
y ∈ {−1, 1} and a ∈ R, and the 0− 1 loss is 1(y 6= sgn(a)). If sgn(y) 6= a then ya ≤ 0
and

e−ya ≥ 1− ya ≥ 1 = 1(y 6= sgn(a)).

In general e−ya ≥ 0 so the we obtain the upper bound. To prove convexity, we compute
the second derivative and note that it is positive:

∂2

∂a2
e−ya = y2e−ya > 0.

2. Show how to perform gradient boosting with the hinge loss.

Solution. Recall that the hinge loss is given by `(y, a) = max(0, 1− ya). Define g by

g(y, a) =

{
−y if 1− ya > 0,
0 else.

Then g(y, a) is a subgradient of `(y, a) with respect to a. At stage m of gradient
boosting, we alredy have formed

fm−1 =
m−1∑
i=1

νihi.

We then compute the pseudoresiduals rm given by

rm = − (g(y1, fm−1(x1)), . . . , g(yn, fm−1(xn))) .

After building the mock dataset Dm = {(x1, (rm)1), . . . , (xn, (rm)n)} we perform a least
squares fit to obtain hm ∈ H. Then we can determine νm (usually a small fixed value).
Finally we let fm = fm−1 + νmhm.

3. Suppose we are using gradient boosting. On each step we can do a better job of fitting
the pseudoresiduals if we allow for deeper trees. Why might deep trees be discouraged
while gradient boosting?

Solution. Deep trees can lead to overfitting the data.
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