
Machine Learning – Brett Bernstein

Recitation 4: Subgradients

Intro Question

1. When stating a convex optimization problem in standard form we write

minimize f0(x)
subject to fi(x) ≤ 0 for all i = 1, . . . , n.

where f0, f1, . . . , fn are convex. Why don’t we use ≥ or = instead of ≤?

More on Convexity and Review of Duality

Recall that a set S ⊆ Rd is convex if for any x, y ∈ S and θ ∈ (0, 1) we have (1−θ)x+θy ∈ S.
A function f : Rd → R is convex if for any x, y ∈ Rd and θ ∈ (0, 1) we have f((1−θ)x+θy) ≤
(1− θ)f(x) + θf(y).

Convex Set

Non-convex Set

Convex Function

Non-convex Function

For a function f : Rd → R, a level set (or contour line) corresponding to the value c is given
by the set of all points x ∈ Rd where f(x) = c:

f−1{c} = {x ∈ Rd | f(x) = c}.

Analogously, the sublevel set for the value c is the set of all points x ∈ Rd where f(x) ≤ c:

f−1(−∞, c] = {x ∈ Rd | f(x) ≤ c}.
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f(x) ≤ −1

Above is a non-convex function, the contour plot, and the sublevel set where f(x) ≤ −1.
When f is convex, we can say something nice about these sets.

Theorem 1. If f : Rd → R is convex then the sublevel sets are convex.

Proof. Fix a sublevel set S = {x ∈ Rd | f(x) ≤ c} for some fixed c ∈ R. If x, y ∈ S and
θ ∈ (0, 1) then we have

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y) ≤ (1− θ)c+ θc = c.
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f(x) ≤ −1

In the concept check questions we will show that the intersection of convex sets is convex.

S ∩ TS

T

This proves that having a bunch of conditions of the form fi(x) ≤ 0 where the fi are convex
gives us a convex feasible set. While the sublevel sets are convex, a convex function need
not have convex level sets. Furthermore, sets of the form {x ∈ Rd | f(x) ≥ c} also need not
be convex (called superlevel sets).
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f(x) < −1

f(x) > −1

f(x) = 1

This brings us to the question, why do we care about convexity? Here are some reasons.

1. If f : Rd → R is convex, then local minima are global minima.

2. Given a point x ∈ Rd and a closed convex set S, there is a unique point of S that is
closest to x (called the projection of x onto S).

3. A pair of disjoint convex sets can be separated by a hyperplane (used to prove Slater’s
condition for strong duality).

We also discussed duality as seen below. Lagrange duality let’s us change our optimization
problem into a new problem with potentially simpler constraints. Moreover, the Lagrange
dual optimal value d∗ will always be less than the primal optimal value p∗ (called weak
duality). If we satisfy certain conditions (Slater) we get strong duality (p∗ = d∗). Using the
strong duality relationship we can derive interesting relations between the primal and dual
solutions (e.g., complementary slackness).

minimize f0(x)
subject to fi(x) ≤ 0

Lagrange Dual
maximize g(λ)
subject to λ ≥ 0
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Gradients and Subgradients

Definitions and Basic Properties

Recall that for differentiable f : Rd → R we can write the linear approximation

f(x+ v) ≈ f(x) +∇f(x)Tv,

when v is small. We can use gradients to characterize convexity.

Theorem 2. Let f : Rd → R be differentiable. Then f is convex iff

f(x+ v) ≥ f(x) +∇f(x)Tv

hold for all x, v ∈ Rd.

In words, this says that the approximating tangent line (or hyperplane in higher dimen-
sions) is a global underestimator (lies entirely below the function).
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f(x0) + f ′(x)(x− x0)

Even if f is not differentiable at x, we can still look for vectors satisfying a similar relation-
ship.

Definition 3 (Subgradient, Subdifferential, Subdifferentiable). Let f : Rd → R. We say
that g ∈ Rd is a subgradient of f at x ∈ Rd if

f(x+ v) ≥ f(x) + gTv

for all v ∈ Rd. The subdifferential ∂f(x) is the set of all subgradients of f at x. We say that
f is subdifferentiable at x if ∂f(x) 6= ∅ (i.e., if there is at least one subgradient).

Below are subgradients drawn at x0 and x1.
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Facts about subgradients (proven in the concept check exercises).

1. If f is convex and differentiable at x then ∂f(x) = {∇f(x)}.

2. If f is convex then ∂f(x) 6= ∅ for all x.

3. The subdifferential ∂f(x) is a convex set. Thus the subdifferential can contain 0, 1, or
infinitely many elements.

4. If the zero vector is a subgradient of f at x, then x is a global minimum.

5. If g is a subgradient of f at x, then (g,−1) is orthogonal to the underestimating
hyperplane {(x+ v, f(x) + gTv) | v ∈ Rd} at (x, f(x)).

Consider f(x) = |x| depicted below with some underestimating linear approximations.
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f(x) = |x|

For x 6= 0 we have ∂f(x) = sgn(x) since the function is convex and differentiable. At x = 0
we have ∂f(x) = [−1, 1] since any slope between −1 and 1 will give an underestimating
line. Note that the subgradients are numbers here since f : R → R. Next we compute
∂f(3, 0) where f(x1, x2) = |x1| + 2|x2|. The first coordinate of any subgradient must be 1
due to the |x1| part. The second coordinate can have any value between −2 and 2 to keep
the hyperplane under the function.
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∂f(3, 0) = {(1, b)T | b ∈ [−2, 2]}

Contour Lines and Descent Directions

We can also look at the relationship between gradients and contour lines. Remember that
for a function f : Rd → R, the graph lies in Rd+1 but the contour plot, level sets, gradients,
and subgradients all live in Rd. This is often a point of confusion. If f : Rd → R is
continuously differentiable and x0 ∈ Rd with ∇f(x0) 6= 0 then ∇f(x0) is normal to the level
set S = {x ∈ Rd | f(x) = f(x0)}.
Proof sketch. Let γ : (−1, 1) → S be differentiable path lying in S with γ(0) = x0 (think
of γ as describing a particle moving along the contour S). Then f(γ(t)) = f(x0) for all
t ∈ (−1, 1) so that d

dt
f(γ(t)) = 0. Thus we have

0 =
d

dt
f(γ(0)) = ∇f(x0)

Tγ′(0),

so ∇f(x0) is orthogonal to γ′(0) (i.e., the gradient is orthogonal to the velocity vector of the
particle γ that is tangent to the contour line at x0). As γ is arbitrary, the result follows.
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∇f(x)

Now let’s handle the non-differentiable case. Let f : Rd → R have subgradient g at x0. The
hyperplane H orthogonal to g at x0 must support the level set S = {x ∈ Rd | f(x) = f(x0)}.
That is, H passes through x0 and all of S lies on one side of H (the side containing −g).
This is immediate since any point y lying strictly on the side containing g must have

f(y) ≥ f(x) + gT (y − x) > f(x).
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f(y) ≥ f(v) + gT (y − v) > f(v)

gT (y − v) < 0

Even though points on the g side of H have larger f -values than f(x0), it is not true that
points on the −g side have smaller f -values. In other words, if g is a subgradient it may
be true that −g is not a descent direction (this is the case above). Using the same logic we
obtain the following theorem.

Theorem 4. Suppose f : Rd → R is convex, let x0 ∈ Rd not be a minimizer, let g be a
subgradient of f at x0, and suppose x∗ ∈ Rd is a minimizer of f . Then for sufficiently small
t > 0

‖x∗ − (x0 − tg)‖2 < ‖x∗ − x0‖2.
In other words, stepping in the direction of a negative subgradient brings us closer to a
minimizer.

In fact, we can just choose t in the interval

t ∈
(

0,
2(f(x0)− f(x∗))

‖g‖22

)
,

but since we usually don’t know f(x∗) this is of limited use.
This theorem suggests the following algorithm called Subgradient Descent.

1. Let x(0) denote the initial point.
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2. For k = 1, 2, . . .

(a) Assign x(k) = x(k−1) − αkg, where g ∈ ∂f(x(k−1)) and αk is the step size.

(b) Set f
(k)
best = mini=1,...,k f(x(i)). (Used since this isn’t a descent method.)

Unfortuntely, there aren’t any good stopping conditions worth mentioning. Recall that f is
called Lipschitz with constant L if

|f(x)− f(y)| ≤ L‖x− y‖

for all x, y.

Theorem 5. Let f : Rn → R be convex and Lipschitz with constant G, and let x∗ be a
minimizer. For a fixed step size t, the subgradient method satisfies:

lim
k→∞

f(x
(k)
best) ≤ f(x∗) +G2t/2.

For step sizes respecting the Robbins-Monro conditions,

lim
k→∞

f(x
(k)
best) = f(x∗).

Subgradient descent can be fairly slow, with a provable convergence rate of O(1/ε2) to
achieve an error of order ε. Recall that the nice case for (unaccelerated) gradient descent
was O(1/ε).
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