Recitation 4 Subgradients

Brett Bernstein

CDS at NYU

October 20, 2017

Brett Bernstein (CDS at NYU)

Recitation 4

October 20, 2017 1 / 28

3

(日) (同) (三) (三)

Intro Question

Question

When stating a convex optimization problem in standard form we write

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ for all $i = 1, ..., n$.

where f_0, f_1, \ldots, f_n are convex. Why don't we use \geq or = instead of \leq ?

(日) (同) (三) (三)

Review of Convexity

Definition (Convex Set)

A set $S \subseteq \mathbb{R}^d$ is convex if for any $x, y \in S$ and $\theta \in (0, 1)$ we have $(1 - \theta)x + \theta y \in S$.

Definition (Convex Function)

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if for any $x, y \in \mathbb{R}^d$ and $\theta \in (0, 1)$ we have $f((1 - \theta)x + \theta y) \leq (1 - \theta)f(x) + \theta f(y)$.

(日) (周) (三) (三)

Review of Convexity

Brett Bernstein (CDS at NYU)

3

(Sub-)Level Sets of Convex Functions

Definition ((Sub-)Level Sets)

For a function $f : \mathbb{R}^d \to \mathbb{R}$, a *level set* (or contour line) corresponding to the value *c* is given by the set of all points $x \in \mathbb{R}^d$ where f(x) = c:

$$f^{-1}{c} = {x \in \mathbb{R}^d \mid f(x) = c}.$$

Analogously, the sublevel set for the value c is the set of all points $x \in \mathbb{R}^d$ where $f(x) \leq c$:

$$f^{-1}(-\infty,c] = \{x \in \mathbb{R}^d \mid f(x) \le c\}.$$

3D Plot and Contour Plot With Sublevel Set

3

イロト イヨト イヨト イヨト

3D Plot and Contour Plot With Sublevel Set

Sublevel Sets of Convex Functions

Theorem

If $f : \mathbb{R}^d \to \mathbb{R}$ is convex then the sublevel sets are convex.

Brett Bernstein (CDS at NYU)

(日) (同) (三) (三)

Sublevel Sets of Convex Functions

Theorem

If $f : \mathbb{R}^d \to \mathbb{R}$ is convex then the sublevel sets are convex.

Proof.

Fix a sublevel set $S = \{x \in \mathbb{R}^d \mid f(x) \le c\}$ for some fixed $c \in \mathbb{R}$. If $x, y \in S$ and $\theta \in (0, 1)$ then we have

$$f((1- heta)x+ heta y) \leq (1- heta)f(x)+ heta f(y) \leq (1- heta)c+ heta c=c$$

(日) (四) (日) (日) (日)

Plots of Convex Function With Sublevel Set

3

イロト イヨト イヨト イヨト

Intersection of Convex Sets is Convex

Level Sets and Superlevel Sets Not Convex

Brett Bernstein (CDS at NYU)

October 20, 2017 11 / 28

- 2

Lagrange Duality

3

イロト イポト イヨト イヨト

Weak Duality

3

イロト イヨト イヨト イヨト

Strong Duality

æ

イロト イヨト イヨト イヨト

Gradient Characterization of Convexity

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable. Then f is convex iff

$$f(x+v) \ge f(x) + \nabla f(x)^T v$$

hold for all $x, v \in \mathbb{R}^d$.

(日) (同) (三) (三)

Gradient Approximation Gives Global Underestimator

47 ▶

Subgradients

Definition (Subgradient, Subdifferential, Subdifferentiable)

Let $f : \mathbb{R}^d \to \mathbb{R}$. We say that $g \in \mathbb{R}^d$ is a *subgradient* of f at $x \in \mathbb{R}^d$ if

$$f(x+v) \geq f(x) + g^T v$$

for all $v \in \mathbb{R}^d$. The subdifferential $\partial f(x)$ is the set of all subgradients of f at x. We say that f is subdifferentiable at x if $\partial f(x) \neq \emptyset$ (i.e., if there is at least one subgradient).

Subgradients at x_0 and x_1

• If f is convex and differentiable at x then $\partial f(x) = \{\nabla f(x)\}$.

3

イロト イヨト イヨト イヨト

- **1** If f is convex and differentiable at x then $\partial f(x) = \{\nabla f(x)\}$.
- **2** If f is convex then $\partial f(x) \neq \emptyset$ for all x.

3

(日) (周) (三) (三)

- **1** If f is convex and differentiable at x then $\partial f(x) = \{\nabla f(x)\}$.
- **2** If f is convex then $\partial f(x) \neq \emptyset$ for all x.
- The subdifferential \(\partial f(x)\) is a convex set. Thus the subdifferential can contain 0, 1, or infinitely many elements.

(日) (周) (三) (三)

- **1** If f is convex and differentiable at x then $\partial f(x) = \{\nabla f(x)\}$.
- **2** If f is convex then $\partial f(x) \neq \emptyset$ for all x.
- The subdifferential \(\partial f(x)\) is a convex set. Thus the subdifferential can contain 0, 1, or infinitely many elements.
- If the zero vector is a subgradient of f at x, then x is a global minimum.

イロト 不得下 イヨト イヨト

- **1** If f is convex and differentiable at x then $\partial f(x) = \{\nabla f(x)\}$.
- **2** If f is convex then $\partial f(x) \neq \emptyset$ for all x.
- The subdifferential \(\partial f(x)\) is a convex set. Thus the subdifferential can contain 0, 1, or infinitely many elements.
- If the zero vector is a subgradient of f at x, then x is a global minimum.
- If g is a subgradient of f at x, then (g, −1) is orthogonal to the underestimating hyperplane {(x + v, f(x) + g^Tv) | v ∈ ℝ^d} at (x, f(x)).

Compute the Subdifferentials of f(x) = |x|

Compute $\partial f(3,0)$ For $f(x_1, x_2) = |x_1| + 2|x_2|$

3

イロト イヨト イヨト イヨト

Gradients and Subgradients

Compute $\partial f(3,0)$ For $f(x_1, x_2) = |x_1| + 2|x_2|$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Compute $\partial f(3,0)$ For $f(x_1, x_2) = |x_1| + 2|x_2|$

- 2

Gradient Lies Normal To Contours

Theorem

If $f : \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and $x_0 \in \mathbb{R}^d$ with $\nabla f(x_0) \neq 0$ then $\nabla f(x_0)$ is normal to the level set $S = \{x \in \mathbb{R}^d \mid f(x) = f(x_0)\}.$

(日) (四) (日) (日) (日)

Gradient Lies Normal To Contours

Brett Bernstein (CDS at NYU)

October 20, 2017 25 / 28

Normal Plane to Subgradient Splits Space

æ

イロト イ団ト イヨト イヨト

Subgradient Descent

- Let $x^{(0)}$ denote the initial point.
- Por k = 1, 2, ...
 Assign x^(k) = x^(k-1) − α_kg, where g ∈ ∂f(x^(k-1)) and α_k is the step size.
 Set f^(k)_{best} = min_{i=1,...,k} f(x⁽ⁱ⁾). (Used since this isn't a descent method.)

Convergence of Subgradient Descent

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and Lipschitz with constant G, and let x^* be a minimizer. For a fixed step size t, the subgradient method satisfies:

$$\lim_{k\to\infty}f(x_{best}^{(k)})\leq f(x^*)+G^2t/2.$$

For step sizes respecting the Robbins-Monro conditions,

$$\lim_{k\to\infty}f(x_{best}^{(k)})=f(x^*).$$

Brett Bernstein (CDS at NYU)

October 20, 2017 28 / 28