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Initial Question
Intro Question

Question

When stating a convex optimization problem in standard form we write

minimize  fo(x)
subject to fi(x) <0 foralli=1,...,n.

where fy, fi, ..., f, are convex. Why don't we use > or = instead of <7
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More on Convexity and Review of Duality
Review of Convexity

Definition (Convex Set)

A set S C RY is convex if for any x,y € S and 6 € (0,1) we have
(1-0)x+06ye€sS.

Definition (Convex Function)

A function f : RY — R is convex if for any x,y € R? and 0 € (0,1) we
have f((1 —8)x +8y) < (1 —0)f(x) + 0f(y).
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(Sub-)Level Sets of Convex Functions

Definition ((Sub-)Level Sets)

For a function f : RY — R, a level set (or contour line) corresponding to
the value c is given by the set of all points x € R? where f(x) = c:

fHc}={xeR?|f(x) = c}.

Analogously, the sublevel set for the value c is the set of all points x € R
where f(x) < ¢:

fl(—o0,c] = {x e R?| f(x) < c}.
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More on Convexity and Review of Duality
3D Plot and Contour Plot With Sublevel Set
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Sublevel Sets of Convex Functions

Theorem J

If f - RY — R is convex then the sublevel sets are convex.
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Sublevel Sets of Convex Functions

Theorem

If f - RY — R is convex then the sublevel sets are convex.

Proof.

Fix a sublevel set S = {x € R | f(x) < c} for some fixed ¢ € R. If
x,y € S and 0 € (0,1) then we have

F((1—0)x + 0y) < (1 - 0)f(x) + 0f(y) < (1 — 0)c + bc = c.
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Recitation 4 More on Convexity and Review of Duality

Plots of Convex Function With Sublevel Set
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Intersection of Convex Sets is Convex
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More on Convexity and Review of Duality
Level Sets and Superlevel Sets Not Convex
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Lagrange Duality

minimize  fo(x)
subject to  fi(z) <0

Lagrange Dual

maximize g(A)
subject to A >0
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Skl
Weak Duality

ol gk
fo()

Brett Bernstein (CDS at NYU) Recitation 4 October 20, 2017 13 /28



Skl
Strong Duality
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Gradient Characterization of Convexity

Theorem

Let f : R? — R be differentiable. Then f is convex iff
f(x+v) > f(x)+ VFf(x)Tv

hold for all x,v € RY.

Brett Bernstein (CDS at NYU) Recitation 4 October 20, 2017 15 / 28




Gradient Approximation Gives Global Underestimator

YA

f(xo) + f'(z) (2 — 20)
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Sl s
Subgradients

Definition (Subgradient, Subdifferential, Subdifferentiable)
Let f : RY — R. We say that g € R? is a subgradient of f at x € R if
f(x+v)>f(x) —i—gTv

for all v € RY. The subdifferential Of (x) is the set of all subgradients of f
at x. We say that f is subdifferentiable at x if Of (x) # 0 (i.e., if there is
at least one subgradient).
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Subgradients at xg and x;
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Sl s
Facts About Subgradients

@ If f is convex and differentiable at x then Of(x) = {Vf(x)}.
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Facts About Subgradients
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Facts About Subgradients

@ If f is convex and differentiable at x then Of(x) = {Vf(x)}.

Q |If f is convex then Of(x) # 0 for all x.
© The subdifferential 9f(x) is a convex set. Thus the subdifferential
can contain 0, 1, or infinitely many elements.
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Sl s
Facts About Subgradients

If £ is convex and differentiable at x then 9f(x) = {Vf(x)}.
If f is convex then 9f(x) # 0 for all x.

The subdifferential Of(x) is a convex set. Thus the subdifferential
can contain 0, 1, or infinitely many elements.

© 00

@ |If the zero vector is a subgradient of f at x, then x is a global
minimum.
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Sl s
Facts About Subgradients

If £ is convex and differentiable at x then 9f(x) = {Vf(x)}.
If f is convex then 9f(x) # 0 for all x.

The subdifferential Of(x) is a convex set. Thus the subdifferential
can contain 0, 1, or infinitely many elements.

© 00

@ |If the zero vector is a subgradient of f at x, then x is a global
minimum.

@ If g is a subgradient of f at x, then (g, —1) is orthogonal to the
underestimating hyperplane {(x + v, f(x) + g"v) | v € R} at

(x, f(x))-
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Gradients and Subgradients
Compute the Subdifferentials of f(x) = |x]|

YA

Bl
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Gradients and Subgradients
Compute 0f(3,0) For f(x1, x2) = |x1| + 2|x2|
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Gradients and Subgradients
Compute 0f(3,0) For f(x1, x2) = |x1| + 2|x2|

0f(3,0) = {(L,b)" | b€ [-2,2]}

X2
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Gradient Lies Normal To Contours

Theorem

If f : R? — R is continuously differentiable and xo € RY with Vf(xp) # 0
then Vf(xo) is normal to the level set S = {x € RY | f(x) = f(xo)}.
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Recitation 4 Gradients and Subgradients

Gradient Lies Normal To Contours
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Normal Plane to Subgradient Splits Space

gt (y—v) <0

€2

Brett Bernstein (CDS at NYU)

Recitation 4

—v) > f(v)

DA
October 20, 2017 26 / 28



Sl s
Subgradient Descent

O Let x(9 denote the initial point.

Q@ Fork=1,2,...
0 Assign x(0) = x(k=1) _ o, g where g € Of (x(*~1)) and ay is the step
size.
@ Set fb(:s)t = min;—1,_x f(x{)). (Used since this isn't a descent method.)
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Convergence of Subgradient Descent

Theorem

Let f : R™ — R be convex and Lipschitz with constant G, and let x* be a
minimizer. For a fixed step size t, the subgradient method satisfies:

: (k) 2
k||_>moo f(Xpear) < F(X*) + G7t/2.
For step sizes respecting the Robbins-Monro conditions,

. k *
lim f(xéegt) = f(x*).

k—o0
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