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Recitation 4 Initial Question

Intro Question

Question

When stating a convex optimization problem in standard form we write

minimize f0(x)
subject to fi (x) ≤ 0 for all i = 1, . . . , n.

where f0, f1, . . . , fn are convex. Why don’t we use ≥ or = instead of ≤?
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Recitation 4 More on Convexity and Review of Duality

Review of Convexity

Definition (Convex Set)

A set S ⊆ Rd is convex if for any x , y ∈ S and θ ∈ (0, 1) we have
(1− θ)x + θy ∈ S .

Definition (Convex Function)

A function f : Rd → R is convex if for any x , y ∈ Rd and θ ∈ (0, 1) we
have f ((1− θ)x + θy) ≤ (1− θ)f (x) + θf (y).
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Review of Convexity

Convex Set

Non-convex Set

Convex Function

Non-convex Function
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Recitation 4 More on Convexity and Review of Duality

(Sub-)Level Sets of Convex Functions

Definition ((Sub-)Level Sets)

For a function f : Rd → R, a level set (or contour line) corresponding to
the value c is given by the set of all points x ∈ Rd where f (x) = c :

f −1{c} = {x ∈ Rd | f (x) = c}.

Analogously, the sublevel set for the value c is the set of all points x ∈ Rd

where f (x) ≤ c :

f −1(−∞, c] = {x ∈ Rd | f (x) ≤ c}.
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Recitation 4 More on Convexity and Review of Duality

3D Plot and Contour Plot With Sublevel Set
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3D Plot and Contour Plot With Sublevel Set

f(x) ≤ −1
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Recitation 4 More on Convexity and Review of Duality

Sublevel Sets of Convex Functions

Theorem

If f : Rd → R is convex then the sublevel sets are convex.

Proof.

Fix a sublevel set S = {x ∈ Rd | f (x) ≤ c} for some fixed c ∈ R. If
x , y ∈ S and θ ∈ (0, 1) then we have

f ((1− θ)x + θy) ≤ (1− θ)f (x) + θf (y) ≤ (1− θ)c + θc = c .
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Plots of Convex Function With Sublevel Set

f(x) ≤ −1
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Intersection of Convex Sets is Convex

S ∩ TS

T
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Recitation 4 More on Convexity and Review of Duality

Level Sets and Superlevel Sets Not Convex

f(x) < −1

f(x) > −1

f(x) = −1
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Recitation 4 More on Convexity and Review of Duality

Lagrange Duality

minimize f0(x)
subject to fi(x) ≤ 0

Lagrange Dual
maximize g(λ)
subject to λ ≥ 0
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Recitation 4 More on Convexity and Review of Duality

Weak Duality

g

λ

f0

x

f0(x)

g(λ)

p∗

d∗
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Recitation 4 More on Convexity and Review of Duality

Strong Duality

g

λ

f0

x

f0(x)

g(λ)

p∗ = d∗
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Recitation 4 Gradients and Subgradients

Gradient Characterization of Convexity

Theorem

Let f : Rd → R be differentiable. Then f is convex iff

f (x + v) ≥ f (x) +∇f (x)T v

hold for all x , v ∈ Rd .
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Recitation 4 Gradients and Subgradients

Gradient Approximation Gives Global Underestimator

y

xx0

f(x0) + f ′(x)(x− x0)

Brett Bernstein (CDS at NYU) Recitation 4 October 20, 2017 16 / 28



Recitation 4 Gradients and Subgradients

Subgradients

Definition (Subgradient, Subdifferential, Subdifferentiable)

Let f : Rd → R. We say that g ∈ Rd is a subgradient of f at x ∈ Rd if

f (x + v) ≥ f (x) + gT v

for all v ∈ Rd . The subdifferential ∂f (x) is the set of all subgradients of f
at x . We say that f is subdifferentiable at x if ∂f (x) 6= ∅ (i.e., if there is
at least one subgradient).
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Recitation 4 Gradients and Subgradients

Subgradients at x0 and x1

y

x
x0

x1
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Recitation 4 Gradients and Subgradients

Facts About Subgradients

1 If f is convex and differentiable at x then ∂f (x) = {∇f (x)}.
2 If f is convex then ∂f (x) 6= ∅ for all x .

3 The subdifferential ∂f (x) is a convex set. Thus the subdifferential
can contain 0, 1, or infinitely many elements.

4 If the zero vector is a subgradient of f at x , then x is a global
minimum.

5 If g is a subgradient of f at x , then (g ,−1) is orthogonal to the
underestimating hyperplane {(x + v , f (x) + gT v) | v ∈ Rd} at
(x , f (x)).
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Recitation 4 Gradients and Subgradients

Compute the Subdifferentials of f (x) = |x |
y

x

f(x) = |x|

Brett Bernstein (CDS at NYU) Recitation 4 October 20, 2017 20 / 28



Recitation 4 Gradients and Subgradients

Compute ∂f (3, 0) For f (x1, x2) = |x1|+ 2|x2|
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Recitation 4 Gradients and Subgradients

Compute ∂f (3, 0) For f (x1, x2) = |x1|+ 2|x2|

x2

x1v

∂f(3, 0) = {(1, b)T | b ∈ [−2, 2]}
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Recitation 4 Gradients and Subgradients

Gradient Lies Normal To Contours

Theorem

If f : Rd → R is continuously differentiable and x0 ∈ Rd with ∇f (x0) 6= 0
then ∇f (x0) is normal to the level set S = {x ∈ Rd | f (x) = f (x0)}.
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Recitation 4 Gradients and Subgradients

Gradient Lies Normal To Contours

∇f(x)
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Normal Plane to Subgradient Splits Space

x2

x1

g

x∗

v

f(y) ≥ f(v) + gT (y − v) > f(v)

gT (y − v) < 0
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Recitation 4 Gradients and Subgradients

Subgradient Descent

1 Let x (0) denote the initial point.
2 For k = 1, 2, . . .

1 Assign x (k) = x (k−1) − αkg , where g ∈ ∂f (x (k−1)) and αk is the step
size.

2 Set f
(k)
best = mini=1,...,k f (x (i)). (Used since this isn’t a descent method.)
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Recitation 4 Gradients and Subgradients

Convergence of Subgradient Descent

Theorem

Let f : Rn → R be convex and Lipschitz with constant G , and let x∗ be a
minimizer. For a fixed step size t, the subgradient method satisfies:

lim
k→∞

f (x
(k)
best) ≤ f (x∗) + G 2t/2.

For step sizes respecting the Robbins-Monro conditions,

lim
k→∞

f (x
(k)
best) = f (x∗).

Brett Bernstein (CDS at NYU) Recitation 4 October 20, 2017 28 / 28


	Recitation 4
	Initial Question
	More on Convexity and Review of Duality
	More on Convexity and Review of Duality
	Gradients and Subgradients


