On the Uniqueness of the SVM Solution

Hard-Margin SVM

Recall that the hard-margin SVM problem is the following:

\[
\begin{align*}
\text{minimize} & \quad \|w\|_2^2 \\
\text{subject to} & \quad y_i(w^T x_i + b) \geq 1 \quad \text{for all } i = 1, \ldots, n.
\end{align*}
\]

We prove the following theorem.

Theorem 1. Let \((x_i, y_i) \in \mathbb{R}^d \times \{-1, +1\}\) for \(i = 1, \ldots, n\) be our training data, and suppose there are \(w \in \mathbb{R}^d\) and \(b \in \mathbb{R}\) such that \(y_i(w^T x_i + b) > 0\) for all \(i\) (i.e., linear separability). Furthermore, suppose there exist \(i, j\) with \(y_i = +1\) and \(y_j = -1\). Then there is a unique minimizer \((w^*, b^*)\) to the hard-margin SVM problem.

First we establish the following lemma.

Lemma 2. Consider the optimization problem

\[
\begin{align*}
\text{minimize}_{w \in \mathbb{R}^m, v \in \mathbb{R}^n} & \quad f(w) + g(v) \\
\text{subject to} & \quad (w, v) \in S,
\end{align*}
\]

where \(S \subseteq \mathbb{R}^{m+n}\) is convex, \(f\) is strictly convex, and \(g\) is convex. If \((w_1, v_1)\) and \((w_2, v_2)\) are both minimizers then \(w_1 = w_2\).

Proof. Suppose, for contradiction, that \((w_1, v_1)\) and \((w_2, v_2)\) are minimizers with \(w_1 \neq w_2\). Since \(S\) is convex, the average \(((w_1 + w_2)/2, (v_1 + v_2)/2)\) is also feasible. By strict convexity we have

\[
f((w_1 + w_2)/2) < f(w_1)/2 + f(w_2)/2,
\]

and by convexity we have

\[
g((v_1 + v_2)/2) \leq g(v_1)/2 + g(v_2)/2.
\]

Thus

\[
f((w_1 + w_2)/2) + g((v_1 + v_2)/2) < \frac{f(w_1) + g(v_1)}{2} + \frac{f(w_2) + g(v_2)}{2} = f(w_1) + g(v_1),
\]

with the last equality following since the two minimizers have equal objective values. This contradicts our assumption that \((w_1, v_1)\) is a minimizer, and completes the proof. \(\square\)
Proof of Theorem 1. First we establish existence. Let \(w_L, b_L \) satisfy \(y_i (w_L^T x_i + b_L) \geq \epsilon \) for all \(i \) and some \(\epsilon > 0 \) (such \(w_L, b_L \) must exist by linear separability). Then we have

\[
y_i \left(\frac{w_L^T x_i + b_L}{\epsilon} \right) \geq 1.
\]

This shows \((w_L/\epsilon, b_L/\epsilon) \) is in the feasible set. Thus any minimizer \((w_*, b_*) \), if it exists, must have \(\|w_*\|_2 \leq \|w_L\|_2/\epsilon \). Furthermore, if \(\|w_*\| \leq \|w_L\|_2/\epsilon \) then note that

\[
y_i b \leq y_i w_*^T x_i - 1 \leq \|y_i w_*^T x_i\| + 1
\]

implies that

\[
-b \leq 1 + \|w_*\|_2 \|x_i\|_2 \leq 1 + \|w_L\|_2 \|x_i\|_2/\epsilon
\]

when \(y_i = -1 \) and

\[
-b \leq 1 + \|w_*\|_2 \|x_i\|_2 \leq 1 + \|w_L\|_2 \|x_i\|_2/\epsilon
\]

when \(y_i = +1 \). By assumption, both values of \(y_i \) appear in our data set. Thus we obtain

\[
|b| \leq 1 + \|w_L\|_2 \max_i \|x_i\|_2/\epsilon.
\]

This shows that we are optimizing a continuous function over a non-empty compact region, and thus must have a minimizer.

Next we prove uniqueness. Suppose \((w_1, b_1) \) and \((w_2, b_2) \) are both minimizers. By the lemma we have \(w_1 = w_2 \) using \(f(w) = \|w\|_2^2 \) and \(g(b) = 0 \). To prove \(b_1 = b_2 \) we use the following fact: at any minimizer \((w_*, b_*) \) there must be \(i, j \) with \(y_i = +1 \), \(y_j = -1 \), \(w_*^T x_i + b_* = 1 \) and \(w_*^T x_j + b_* = -1 \). Geometrically, this says that there must be points from both classes lying on the margin boundaries. Note that this implies \(b_1 = b_2 \) since increasing \(b_* \) makes \(w_*^T x_j + b_* > -1 \) and decreasing \(b_* \) makes \(w_*^T x_i + b_* < 1 \). Thus what remains is to establish this geometric fact. To prove it, suppose all data points \(i \) with \(y_i = +1 \) have \(w_*^T x_i + b > 1 \) and let \(m = \min_{y_i = +1} w_*^T x_i + b - 1 \). Letting \(\hat{w} = w_*/(1 + m/2) \) and \(\hat{b} = (b_* - m/2)/(1 + m/2) \) we obtain a new feasible point with a strictly lower objective:

\[
\hat{w}^T x_i + \hat{b} = w_*^T x_i + b_* - m/2 \geq \frac{1 + m/2}{1 + m/2} = 1 \quad \text{(if } y_i = +1)\)

\[
\hat{w}^T x_i + \hat{b} = w_*^T x_i + b_* - m/2 \leq \frac{-1 - m/2}{1 + m/2} = -1 \quad \text{(if } y_i = -1)\)

The same argument will apply if we swap the roles of +1 and −1, thus proving the geometric fact, and completing our proof.

\[\square\]

Soft-Margin SVM

The soft-margin SVM problem is given by

\[
\begin{align*}
\text{minimize}_{w, b, \xi} & \quad \|w\|_2^2 + C \sum_{i=1}^n \xi_i \\
\text{subject to} & \quad y_i (w^T x_i + b) \geq 1 - \xi_i \quad \text{for } i = 1, \ldots, n \\
& \quad \xi_i \geq 0 \quad \text{for } i = 1, \ldots, n.
\end{align*}
\]
Here $C > 0$ is a given constant, and (x_i, y_i) are as in the hard-margin SVM, but not necessarily linearly separable. Applying the lemma with $f(w) = \|w\|_2^2$ and $g(\xi, b) = C \sum_{i=1}^{n} \xi_i$ we see that the minimizer w_* is uniquely determined. Unfortunately, b_* is not always uniquely determined. To see how this can happen, suppose

$$|\{i \mid y_i = +1 \text{ and } y_i(w_*^T x_i + b_*) \leq 1\}| = |\{i \mid y_i = -1 \text{ and } y_i(w_*^T x_i + b_*) < 1\}|.$$

Then we can slightly decrease b_* while keeping $\sum_{i=1}^{n} \xi_i$ constant. This is analogous to the lack of uniqueness that can occur when proving the conditional median minimizes the absolute difference loss. For more, see [1], [2].

References
