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On the Uniqueness of the SVM Solution

Hard-Margin SVM

Recall that the hard-margin SVM problem is the following:

minimizew,b ‖w‖22
subject to yi(w

Txi + b) ≥ 1 for all i = 1, . . . , n.

We prove the following theorem.

Theorem 1. Let (xi, yi) ∈ Rd×{−1,+1} for i = 1, . . . , n be our training data, and suppose
there are w ∈ Rd and b ∈ R such that yi(w

Txi + b) > 0 for all i (i.e., linear separability).
Furthermore, suppose there exist i, j with yi = +1 and yj = −1. Then there is a unique
minimizer (w∗, b∗) to the hard-margin SVM problem.

First we establish the following lemma.

Lemma 2. Consider the optimization problem

minimizew∈Rm,v∈Rn f(w) + g(v)
subject to (w, v) ∈ S,

where S ⊆ Rm+n is convex, f is strictly convex, and g is convex. If (w1, v1) and (w2, v2) are
both minimizers then w1 = w2.

Proof. Suppose, for contradiction, that (w1, v1) and (w2, v2) are minimizers with w1 6= w2.
Since S is convex, the average ((w1 +w2)/2, (v1 + v2)/2) is also feasible. By strict convexity
we have

f((w1 + w2)/2) < f(w1)/2 + f(w2)/2,

and by convexity we have

g((v1 + v2)/2) ≤ g(v1)/2 + g(v2)/2.

Thus

f((w1 + w2)/2) + g((v1 + v2)/2) <
f(w1) + g(v1)

2
+
f(w2) + g(v2)

2
= f(w1) + g(v1),

with the last equality following since the two minimizers have equal objective values. This
contradicts our assumption that (w1, v1) is a minimizer, and completes the proof.
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Proof of Theorem 1. First we establish existence. Let wL, bL satisfy yi(w
T
Lxi + bL) ≥ ε for

all i and some ε > 0 (such wL, bL must exist by linear separability). Then we have

yi

(
wL
ε

T

xi +
bL
ε

)
≥ 1.

This shows (wL/ε, bL/ε) is in the feasible set. Thus any minimizer (w∗, b∗), if it exists, must
have ‖w∗‖2 ≤ ‖wL‖2/ε. Furthermore, if ‖w∗‖ ≤ ‖wL‖2/ε then note that

−yib ≤ yiw
T
∗ xi − 1 ≤ |yiwT∗ xi|+ 1

implies that
b ≤ 1 + ‖w∗‖2‖xi‖2 ≤ 1 + ‖wL‖2‖xi‖2/ε

when yi = −1 and
−b ≤ 1 + ‖w∗‖2‖xi‖2 ≤ 1 + ‖wL‖2‖xi‖2/ε

when yi = +1. By assumption, both values of yi appear in our data set. Thus we obtain

|b| ≤ 1 + ‖wL‖2 max
i
‖xi‖2/ε.

This shows that we are optimizing a continuous function over a non-empty compact region,
and thus must have a minimizer.

Next we prove uniqueness. Suppose (w1, b1) and (w2, b2) are both minimizers. By the
lemma we have w1 = w2 using f(w) = ‖w‖22 and g(b) = 0. To prove b1 = b2 we use
the following fact: at any minimizer (w∗, b∗) there must be i, j with yi = +1, yj = −1,
wT∗ xi + b∗ = 1 and wT∗ xj + b∗ = −1. Geometrically, this says that there must be points from
both classes lying on the margin boundaries. Note that this implies b1 = b2 since increasing
b∗ makes wT∗ xj + b∗ > −1 and decreasing b∗ makes wT∗ xi + b∗ < 1. Thus what remains
is to establish this geometric fact. To prove it, suppose all data points i with yi = +1
have wT∗ xi + b > 1 and let m = minyi=+1w

T
∗ xi + b − 1. Letting ŵ = w∗/(1 + m/2) and

b̂ = (b∗ −m/2)/(1 +m/2) we obtain a new feasible point with a strictly lower objective:

ŵTxi + b̂ =
wT∗ xi + b∗ −m/2

1 +m/2
≥ 1 +m/2

1 +m/2
= 1 (if yi = +1),

ŵTxi + b̂ =
wT∗ xi + b∗ −m/2

1 +m/2
≤ −1−m/2

1 +m/2
= −1 (if yi = −1).

The same argument will apply if we swap the roles of +1 and −1, thus proving the geometric
fact, and completing our proof.

Soft-Margin SVM

The soft-margin SVM problem is given by

minimizew,b,ξ ‖w‖22 + C
∑n

i=1 ξi
subject to yi(w

Txi + b) ≥ 1− ξi for i = 1, . . . , n
ξi ≥ 0 for i = 1, . . . , n.
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Here C > 0 is a given constant, and (xi, yi) are as in the hard-margin SVM, but not neces-
sarily linearly separable. Applying the lemma with f(w) = ‖w‖22 and g(ξ, b) = C

∑n
i=1 ξi we

see that the minimizer w∗ is uniquely determined. Unfortunately, b∗ is not always uniquely
determined. To see how this can happen, suppose∣∣{i | yi = +1 and yi(w

T
∗ xi + b∗) ≤ 1}

∣∣ =
∣∣{i | yi = −1 and yi(w

T
∗ xi + b∗) < 1}

∣∣ .
Then we can slightly decrease b∗ while keeping

∑n
i=1 ξi constant. This is analogous to the lack

of uniqueness that can occur when proving the conditional median minimizes the absolute
difference loss. For more, see [1], [2].
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