Introduction to Statistical Learning Theory

David S. Rosenberg

New York University

January 23, 2018
Decision Theory: High Level View
What types of problems are we solving?

- In data science problems, we generally need to:
 - Make a decision
 - Take an action
 - Produce some output
- Have some evaluation criterion
Actions

Definition
An *action* is the generic term for what is produced by our system.

Examples of Actions
- Produce a 0/1 classification [classical ML]
- Reject hypothesis that $\theta = 0$ [classical Statistics]
- Written English text [image captioning, speech recognition, machine translation]
- What’s an action for predicting where a storm will be in 3 hours?
- What’s an action for a self-driving car?
Decision theory is about finding “optimal” actions, under various definitions of optimality.

Examples of Evaluation Criteria

- Is classification correct?
- Does text transcription exactly match the spoken words?
 - Should we give partial credit? How?
- How far is the storm from the prediction location? [for point prediction]
- How likely is the storm’s location under the prediction? [for density prediction]
First two steps to formalizing a problem:

1. Define the *action space* (i.e. the set of possible actions)
2. Specify the evaluation criterion.

Formalization may evolve gradually, as you understand the problem better.
Inputs

Most problems have an extra piece, going by various names:

- Inputs [ML]
- Covariates [Statistics]

Examples of Inputs

- A picture
- A storm’s historical location and other weather data
- A search query
“Outcomes” or “Output” or “Label”

Inputs often paired with *outputs* or *outcomes or labels*

Examples of outcomes/outputs/labels

- Whether or not the picture actually contains an animal
- The storm’s location one hour after query
- Which, if any, of suggested the URLs were selected
Typical Sequence of Events

Many problem domains can be formalized as follows:

1. Observe input x.
2. Take action a.
3. Observe outcome y.
4. Evaluate action in relation to the outcome (via a loss function $\ell(a, y)$)

Note

- Outcome y is often independent of action a
- But this is not always the case:
 - search result ranking
 - automated driving
The Three Spaces:

- **Input space**: \(X \)
- **Action space**: \(A \)
- **Outcome space**: \(Y \)

Concept check:

- What are the spaces for linear regression?
- What are the spaces for logistic regression?
- What are the spaces for a support vector machine?
Some Formalization

The Spaces

- X: input space
- Y: outcome space
- A: action space

Prediction Function (or “decision function”)

A prediction function (or decision function) gets input $x \in X$ and produces an action $a \in A$:

$$f : X \to A$$
$$x \mapsto f(x)$$

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$l : A \times Y \to R$$
$$(a, y) \mapsto l(a, y)$$
Evaluating a Prediction Function

- Loss function ℓ evaluates a single action
- How to evaluate the prediction function as a whole?
- We will use the standard statistical learning theory framework.
Statistical Learning Theory
A Simplifying Assumption

- Assume action has no effect on the output
 - includes all traditional prediction problems
 - what about stock market prediction?
 - what about stock market investing?

- What about fancier problems where this does not hold?
 - often can be reformulated or “reduced” to problems where it does hold
 - see literature on reinforcement learning
Assume there is a data generating distribution $P_{\mathcal{X} \times \mathcal{Y}}$.

All input/output pairs (x, y) are generated i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.

Want prediction function $f(x)$ that generally “does well on average”:

$$\ell(f(x), y)$$

is usually small, in some sense

How can we formalize this?
The Risk Functional

Definition

The **risk** of a prediction function $f : \mathcal{X} \rightarrow \mathcal{A}$ is

$$R(f) = \mathbb{E} \ell(f(x), y).$$

In words, it’s the **expected loss** of f on a new example (x, y) drawn randomly from $P_{\mathcal{X} \times \mathcal{Y}}$.

Risk function cannot be computed

Since we don’t know $P_{\mathcal{X} \times \mathcal{Y}}$, we cannot compute the expectation. But we can estimate it...
The Bayes Prediction Function

Definition

A Bayes prediction function $f^*: \mathcal{X} \to \mathcal{A}$ is a function that achieves the minimal risk among all possible functions:

$$f^* \in \arg\min_f R(f),$$

where the minimum is taken over all functions from \mathcal{X} to \mathcal{A}.

- The risk of a Bayes prediction function is called the Bayes risk.
- A Bayes prediction function is often called the “target function”, since it’s the best prediction function we can possibly produce.
Example: Least Squares Regression

- Spaces: \(\mathcal{A} = y = \mathbb{R} \)
- Square loss:

 \[
 \ell(a, y) = (a - y)^2
 \]
- Risk:

 \[
 R(f) = \mathbb{E}[(f(x) - y)^2] = \mathbb{E}[(f(x) - \mathbb{E}[y|x])^2] + \mathbb{E}[(y - \mathbb{E}[y|x])^2]
 \]

So Bayes prediction function is

\[
 f^*(x) = \mathbb{E}[y|x]
\]
Example 2: Multiclass Classification

- **Spaces:** $A = Y = \{1, \ldots, k\}$
- **0-1 loss:**

\[
\ell(a, y) = 1(a \neq y) := \begin{cases}
1 & \text{if } a \neq y \\
0 & \text{otherwise.}
\end{cases}
\]

- **Risk:**

\[
R(f) = \mathbb{E}[1(f(x) \neq y)] = 0 \cdot \mathbb{P}(f(x) = y) + 1 \cdot \mathbb{P}(f(x) \neq y) = \mathbb{P}(f(x) \neq y),
\]

which is just the misclassification error rate.

- **Bayes prediction function is just the assignment to the most likely class:**

\[
f^*(x) \in \arg \max_{1 \leq c \leq k} \mathbb{P}(y = c \mid x)
\]
But we can’t compute the risk!

- Can’t compute $R(f) = \mathbb{E}\ell(f(x), y)$ because we **don’t know** $P_{X \times Y}$.
- One thing we can do in ML/statistics/data science is assume we have sample data.

Let $\mathcal{D}_n = ((x_1, y_1), \ldots, (x_n, y_n))$ be drawn i.i.d. from $P_{X \times Y}$.

- Let’s draw some inspiration from the Strong Law of Large Numbers:
 If z, z_1, \ldots, z_n are i.i.d. with expected value $\mathbb{E}z$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} z_i = \mathbb{E}z,$$

with probability 1.
The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \ldots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{X \times Y}$.

Definition

The **empirical risk** of $f : X \rightarrow A$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

- By the Strong Law of Large Numbers,

$$\lim_{n \rightarrow \infty} \hat{R}_n(f) = R(f),$$

almost surely.

- But we want to find the f that **minimizes** $R(f)$ - will minimizing $\hat{R}_n(f)$ be good enough?
Empirical Risk Minimization

We want risk minimizer, is empirical risk minimizer close enough?

Definition

A function \hat{f} is an **empirical risk minimizer** if

$$\hat{f} \in \arg\min_f \hat{R}_n(f),$$

where the minimum is taken over all functions.
$P_X = \text{Uniform}[0, 1], \ Y \equiv 1$ (i.e. Y is always 1).

$P_{X \times Y}.$
Empirical Risk Minimization

\[P_X = \text{Uniform}[0, 1], \ Y \equiv 1 \text{ (i.e. } Y \text{ is always 1)}. \]

A sample of size 3 from \(P_{X \times Y} \).
Empirical Risk Minimization

\[P_X = \text{Uniform}[0, 1], \ Y \equiv 1 \text{ (i.e. } Y \text{ is always 1).} \]

A proposed prediction function:

\[
\hat{f}(x) = 1(x \in \{0.25, 0.5, 0.75\}) = \begin{cases}
1 & \text{if } x \in \{0.25, .5, .75\} \\
0 & \text{otherwise}
\end{cases}
\]
Empirical Risk Minimization

\[P_X = \text{Uniform}[0,1], \ Y \equiv 1 \ (\text{i.e. } Y \text{ is always } 1). \]

Under square loss or 0/1 loss: \(\hat{f} \) has Empirical Risk = 0 and Risk = 1.
ERM led to a function f that just memorized the data.

How to spread information or “generalize” from training inputs to new inputs?

Need to smooth things out somehow...

- A lot of modeling is about spreading and extrapolating information from one part of the input space \mathcal{X} into unobserved parts of the space.

One approach: “Constrained ERM”

- Instead of minimizing empirical risk over all prediction functions,
- constrain to a particular subset, called a hypothesis space.
Hypothesis Spaces

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $X \rightarrow A$. It is the collection of prediction functions we are choosing from.

Want Hypothesis Space that...

- Includes only those functions that have desired “regularity”
 - e.g. smoothness, simplicity

- Easy to work with

Example hypothesis spaces?
Constrained Empirical Risk Minimization

- Hypothesis space \mathcal{F}, a set of [prediction] functions mapping $X \rightarrow A$
- **Empirical risk minimizer** (ERM) in \mathcal{F} is

$$\hat{f}_n \in \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

- **Risk minimizer** in \mathcal{F} is $f_\mathcal{F}^* \in \mathcal{F}$, where

$$f_\mathcal{F}^* \in \arg\min_{f \in \mathcal{F}} \mathbb{E} \ell(f(x), y).$$