Stochastic Gradient Descent

David S. Rosenberg

New York University

January 30, 2018
Review: Statistical Learning Theory Framework
Our Setup from Statistical Learning Theory

The Spaces

- \(X \): input space
- \(Y \): outcome space
- \(A \): action space

Prediction Function (or “decision function”)

A **prediction function** (or **decision function**) gets input \(x \in X \) and produces an action \(a \in A \):

\[
f : X \rightarrow A \quad x \mapsto f(x)
\]

Loss Function

A **loss function** evaluates an action in the context of the outcome \(y \).

\[
l : A \times Y \rightarrow \mathbb{R} \quad (a, y) \mapsto l(a, y)
\]
Risk and the Bayes Prediction Function

Definition

The risk of a prediction function \(f : \mathcal{X} \rightarrow \mathcal{A} \) is

\[
R(f) = \mathbb{E}\ell(f(x), y).
\]

In words, it’s the expected loss of \(f \) on a new example \((x, y)\) drawn randomly from \(P_{\mathcal{X} \times \mathcal{Y}} \).

Definition

A Bayes prediction function \(f^* : \mathcal{X} \rightarrow \mathcal{A} \) is a function that achieves the minimal risk among all possible functions:

\[
f^* \in \arg\min_f R(f),
\]

where the minimum is taken over all functions from \(\mathcal{X} \) to \(\mathcal{A} \).

- The risk of a Bayes prediction function is called the Bayes risk.
The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \ldots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}$.

Definition

The empirical risk of $f : \mathcal{X} \rightarrow \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

- But we saw that the unconstrained empirical risk minimizer overfits.
 - i.e. if we minize $\hat{R}_n(f)$ over all functions, we overfit.
Constrained Empirical Risk Minimization

Definition

A hypothesis space \(\mathcal{F} \) is a set of functions mapping \(\mathcal{X} \rightarrow \mathcal{A} \).

- It is the collection of prediction functions we are choosing from.

- **Empirical risk minimizer** (ERM) in \(\mathcal{F} \) is

\[
\hat{f}_n \in \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).
\]

- From now on “ERM” always means “constrained ERM”.
- So we should always specify the hypothesis space when we’re doing ERM.
Example: Linear Least Squares Regression

Setup

- Input space $X = \mathbb{R}^d$
- Output space $Y = \mathbb{R}$
- Action space $Y = \mathbb{R}$

- Loss: $\ell(\hat{y}, y) = (y - \hat{y})^2$

- Hypothesis space: $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} | f(x) = w^T x, w \in \mathbb{R}^d \}$

- Given data set $D_n = \{(x_1, y_1), \ldots, (x_n, y_n)\}$,
 - Let’s find the ERM $\hat{f} \in \mathcal{F}$.
Example: Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

\[
\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2,
\]

where \(w \in \mathbb{R}^d \) parameterizes the hypothesis space \(\mathcal{F} \).

- Now let’s think more generally...
Gradient Descent for Empirical Risk - Scaling Issues
Gradient Descent for Empirical Risk and Averages

- Suppose we have a hypothesis space of functions \(\mathcal{F} = \{ f_w : \mathcal{X} \to \mathcal{A} \mid w \in \mathbb{R}^d \} \)
 - Parameterized by \(w \in \mathbb{R}^d \).
- ERM is to find \(w \) minimizing

\[
\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i)
\]

- Suppose \(\ell(f_w(x_i), y_i) \) is differentiable as a function of \(w \).
- Then we can do gradient descent on \(\hat{R}_n(w) \)...
At every iteration, we compute the gradient at current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla_w \ell(f_w(x_i), y_i)$$

We have to touch all n training points to take a single step. $[O(n)]$

Will this scale to “big data”?

Can we make progress without looking at all the data?
Stochastic Gradient Descent
We know gradient descent works.
But the gradient may be slow to compute.

What if we just use an estimate of the gradient?

Turns out that can work fine.

Intuition:
- Gradient descent is an interactive procedure anyway.
- At every step, we have a chance to recover from previous missteps.
Minibatch Gradient

- The **full gradient** is
 \[\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla_w \ell(f_w(x_i), y_i) \]

- It’s an average over the **full batch** of data \(\mathcal{D}_n = \{(x_1, y_1), \ldots, (x_n, y_n)\} \).

- Let’s take a random subsample of size \(N \) (called a **minibatch**):
 \[(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N}) \]

- The **minibatch gradient** is
 \[\nabla \hat{R}_N(w) = \frac{1}{N} \sum_{i=1}^{N} \nabla_w \ell(f_w(x_{m_i}), y_{m_i}) \]

- What can we say about the minibatch gradient? It’s random. What’s its expectation?
Minibatch Gradient

- What’s the expected value of the minibatch gradient?

\[
\mathbb{E}
\left[\nabla \hat{R}_N(w)\right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[\nabla_w \ell(f_w(x_{m_i}), y_{m_i})] \\
= \mathbb{E}[\nabla_w \ell(f_w(x_{m_1}), y_{m_1})] \\
= \sum_{i=1}^{n} \mathbb{P}(m_1 = i) \nabla_w \ell(f_w(x_i), y_i) \\
= \frac{1}{n} \sum_{i=1}^{n} \nabla_w \ell(f_w(x_{m_i}), y_{m_i}) \\
= \nabla \hat{R}_n(w)
\]

- Technical note: We only assumed that each point in the minibatch is equally likely to be any of the \(n \) points in the batch – no independence needed. So still true if we’re sampling without replacement. Still true if we sample one point randomly and reuse it \(N \) times.
Minibatch Gradient Properties

- Minibatch gradient is an **unbiased estimator** for the [full] batch gradient:

\[
\mathbb{E} \left[\nabla \hat{R}_N(w) \right] = \nabla \hat{R}_n(w)
\]

- The bigger the minibatch, the better the estimate.
Minibatch Gradient – In Practice

- Tradeoffs of minibatch size:
 - Bigger N \implies Better estimate of gradient, but slower (more data to touch)
 - Smaller N \implies Worse estimate of gradient, but can be quite fast

- Even $N = 1$ works, it’s traditionally called **stochastic gradient descent** (SGD).

- These days, people use SGD to refer to minibatch SGD as well.

- If someone says “SGD”, you ask – “What’s your [mini]batch size?”, to avoid ambiguity.
Gradient descent or “full-batch” gradient descent
- Use full data set of size n to determine step direction

Minibatch gradient descent
- Use a random subset of size N to determine step direction
- Yoshua Bengio says\(^1\):
 - N is typically between 1 and few hundred
 - $N = 32$ is a good default value
 - With $N \geq 10$ we get computational speedup (per datum touched)

Stochastic gradient descent
- Minibatch with $m = 1$.
- Use a single randomly chosen point to determine step direction.

But these days terminology isn’t used so consistently, so always clarify the [mini]batch size.

\(^1\)See Yoshua Bengio’s “Practical recommendations for gradient-based training of deep architectures”
Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- initialize $w = 0$
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^{N} \subset D_n$
 - $w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_w \ell(f_w(x_i), y_i) \right]$
Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize \(w = 0 \)
- repeat
 - randomly choose training point \((x_i, y_i) \in \mathcal{D}_n \)
 - \(w \leftarrow w - \eta \nabla_w \ell(f_w(x_i), y_i) \)

Grad(Loss on i'th example)
For SGD, fixed step size can work well in practice.

Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving.

But no theorem for this giving performance guarantees (to my knowledge).
Robbins-Monro conditions

- For convergence guarantee, use decreasing step sizes (dampens noise in step direction).
- Let η_t be the step size at the t'th step.

Robbins-Monro Conditions

Many classical convergence results depend on the following two conditions:

$$\sum_{t=1}^{\infty} \eta_t^2 < \infty \quad \sum_{t=1}^{\infty} \eta_t = \infty$$

- As fast as $\eta_t = O\left(\frac{1}{t}\right)$ would satisfy this... but should be faster than $O\left(\frac{1}{\sqrt{t}}\right)$.
- A useful reference for practical techniques: Leon Bottou’s “Tricks”:
Practical Comparison of GD vs SGD
For huge data, GD isn’t practical.

In a theoretical sense, GD is much faster than SGD... (i.e. better convergence rates)
 • but most of that benefit happens once you’re already pretty close to the solution
 • much faster to add an extra decimal place of accuracy on the minimum
Does SGD Catch Up to GD?

- Ridge regression objective function value for GD and SGD with various stepsizes

- Why doesn’t SGD catch up to batch GD? It does, just takes a very long time.
- Is it worth the wait? As we discuss in next module, probably not...