\(\ell_1 \) and \(\ell_2 \) Regularization

Julia Kempe & David S. Rosenberg

CDS, NYU

February 5, 2019
Tikhonov and Ivanov Regularization
Hypothesis Spaces

- We’ve spoken vaguely about “bigger” and “smaller” hypothesis spaces
- In practice, convenient to work with a nested sequence of spaces:

\[F_1 \subset F_2 \subset F_n \cdots \subset F \]

Polynomial Functions

- \(F = \{ \text{all polynomial functions} \} \)
- \(F_d = \{ \text{all polynomials of degree } \leq d \} \)
Complexity Measures for Decision Functions

- Number of variables / features
- Depth of a decision tree
- Degree of polynomial
- How about for **linear** decision functions, i.e. \(x \mapsto w^T x = w_1 x_1 + \cdots + w_d x_d \)?
 - \(\ell_0 \) complexity: number of non-zero coefficients \(\sum_{i=1}^d 1(w_i \neq 0) \).
 - \(\ell_1 \) “lasso” complexity: \(\sum_{i=1}^d |w_i| \), for coefficients \(w_1, \ldots, w_d \)
 - \(\ell_2 \) “ridge” complexity: \(\sum_{i=1}^d w_i^2 \) for coefficients \(w_1, \ldots, w_d \)
Nested Hypothesis Spaces from Complexity Measure

- Hypothesis space: \mathcal{F}
- Complexity measure $\Omega: \mathcal{F} \to [0, \infty)$
- Consider all functions in \mathcal{F} with complexity at most r:

$$\mathcal{F}_r = \{ f \in \mathcal{F} \mid \Omega(f) \leq r \}$$

- Increasing complexities: $r = 0, 1.2, 2.6, 5.4, \ldots$ gives nested spaces:

$$\mathcal{F}_0 \subset \mathcal{F}_{1.2} \subset \mathcal{F}_{2.6} \subset \mathcal{F}_{5.4} \subset \cdots \subset \mathcal{F}$$
Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega : \mathcal{F} \rightarrow [0, \infty)$ and fixed $r \geq 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

s.t. $\Omega(f) \leq r$

- Choose r using validation data or cross-validation.
- Each r corresponds to a different hypothesis spaces. Could also write:

$$\min_{f \in \mathcal{F}_r} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega : \mathcal{F} \to [0, \infty)$ and fixed $\lambda \geq 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

- Choose λ using validation data or cross-validation.
- (Ridge regression in homework is of this form.)
Ivanov vs Tikhonov Regularization

- Let $L : \mathcal{F} \to \mathbb{R}$ be any performance measure of f
 - e.g. $L(f)$ could be the empirical risk of f
- For many L and Ω, Ivanov and Tikhonov are “equivalent”.
- What does this mean?
 - Any solution f^* you could get from Ivanov, can also get from Tikhonov.
 - Any solution f^* you could get from Tikhonov, can also get from Ivanov.
- In practice, both approaches are effective.
- Tikhonov convenient because it’s *unconstrained* minimization.

Can get conditions for equivalence from Lagrangian duality theory – details in homework.
Ivanov and Tikhonov regularization are equivalent if:

1. For any choice of $r > 0$, any Ivanov solution

$$f_r^* \in \arg\min_{f \in \mathcal{F}} L(f) \text{ s.t. } \Omega(f) \leq r$$

is also a Tikhonov solution for some $\lambda > 0$. That is, $\exists \lambda > 0$ such that

$$f_r^* \in \arg\min_{f \in \mathcal{F}} L(f) + \lambda \Omega(f).$$

2. Conversely, for any choice of $\lambda > 0$, any Tikhonov solution:

$$f_\lambda^* \in \arg\min_{f \in \mathcal{F}} L(f) + \lambda \Omega(f)$$

is also an Ivanov solution for some $r > 0$. That is, $\exists r > 0$ such that

$$f_\lambda^* \in \arg\min_{f \in \mathcal{F}} L(f) \text{ s.t. } \Omega(f) \leq r$$
ℓ_1 and ℓ_2 Regularization
Consider linear models

\[\mathcal{F} = \{ f : \mathbb{R}^d \rightarrow \mathbb{R} | f(x) = w^T x \text{ for } w \in \mathbb{R}^d \} \]

Loss: \(\ell(\hat{y}, y) = (y - \hat{y})^2 \)

Training data \(\mathcal{D}_n = ((x_1, y_1), \ldots, (x_n, y_n)) \)

Linear least squares regression is ERM for \(\ell \) over \(\mathcal{F} \):

\[\hat{w} = \arg \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left(w^T x_i - y_i \right)^2 \]

Can overfit when \(d \) is large compared to \(n \).

e.g.: \(d \gg n \) very common in Natural Language Processing problems (e.g. a 1M features for 10K documents).
Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter $\lambda \geq 0$ is

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2,$$

where $\|w\|_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2-norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter $r \geq 0$ is

$$\hat{w} = \arg\min_{\|w\|_2 \leq r} \frac{1}{n} \sum_{i=1}^{n} \left\{ w^T x_i - y_i \right\}^2.$$
How does ℓ_2 regularization induce “regularity”?

- For $\hat{f}(x) = \hat{w}^T x$, \hat{f} is **Lipschitz continuous** with Lipschitz constant $L = \|\hat{w}\|_2$.
- That is, when moving from x to $x + h$, \hat{f} changes no more than $L\|h\|$.
- So ℓ_2 regularization controls the maximum rate of change of \hat{f}.
- Proof:

 \[
 \left| \hat{f}(x + h) - \hat{f}(x) \right| = |\hat{w}^T (x + h) - \hat{w}^T x| = |\hat{w}^T h| \\
 \leq \|\hat{w}\|_2 \|h\|_2 \text{(Cauchy-Schwarz inequality)}
 \]

- Since $\|\hat{w}\|_1 \geq \|\hat{w}\|_2$, an ℓ_1 constraint will also give a Lipschitz bound.
Ridge Regression: Regularization Path

\[\hat{w}_r = \arg \min_{\|w\|_2^2 \leq r^2} \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

\[\hat{w} = \hat{w}_\infty = \text{Unconstrained ERM} \]

- For \(r = 0 \), \(\|\hat{w}_r\|_2 / \|\hat{w}\|_2 = 0 \).
- For \(r = \infty \), \(\|\hat{w}_r\|_2 / \|\hat{w}\|_2 = 1 \)

Modified from Hastie, Tibshirani, and Wainwright’s *Statistical Learning with Sparsity*, Fig 2.1. About predicting crime in 50 US cities.
Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)
The lasso regression solution for regularization parameter \(\lambda \geq 0 \) is
\[
\hat{w} = \arg \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \{ w^T x_i - y_i \}^2 + \lambda \| w \|_1,
\]
where \(\| w \|_1 = |w_1| + \cdots + |w_d| \) is the \(\ell_1 \)-norm.

Lasso Regression (Ivanov Form)
The lasso regression solution for complexity parameter \(r \geq 0 \) is
\[
\hat{w} = \arg \min_{\| w \|_1 \leq r} \frac{1}{n} \sum_{i=1}^{n} \{ w^T x_i - y_i \}^2.
\]
Lasso Regression: Regularization Path

\[\hat{w}_r = \arg \min_{\|w\|_1 \leq r} \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

\[\hat{w} = \hat{w}_\infty = \text{Unconstrained ERM} \]

- For \(r = 0 \), \(\|\hat{w}_r\|_1 / \|\hat{w}\|_1 = 0 \).
- For \(r = \infty \), \(\|\hat{w}_r\|_1 / \|\hat{w}\|_1 = 1 \)

Modified from Hastie, Tibshirani, and Wainwright’s *Statistical Learning with Sparsity*, Fig 2.1. About predicting crime in 50 US cities.
Ridge vs. Lasso: Regularization Paths

Ridge Regression

Lasso

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
Lasso Gives Feature Sparsity: So What?

Coefficient are 0 \(\Rightarrow\) don’t need those features. What’s the gain?

- Time/expense to compute/buy features
- Memory to store features (e.g. real-time deployment)
- Identifies the important features
- Better prediction? sometimes
- As a feature-selection step for training a slower non-linear model
For ridge regression and lasso regression (and much more)
- the Ivanov and Tikhonov formulations are equivalent
 [Optional homework problem, upcoming.]
- We will use whichever form is most convenient.
Why does Lasso regression give sparse solutions?
Illustrate affine prediction functions in parameter space.
The ℓ_1 and ℓ_2 Norm Constraints

- For visualization, restrict to 2-dimensional input space
- $\mathcal{F} = \{ f(x) = w_1 x_1 + w_2 x_2 \}$ (linear hypothesis space)
- Represent \mathcal{F} by $\{(w_1, w_2) \in \mathbb{R}^2\}$.

- ℓ_2 contour: $w_1^2 + w_2^2 = r$
- ℓ_1 contour: $|w_1| + |w_2| = r$

Where are the “sparse” solutions?
The Famous Picture for ℓ_1 Regularization

\[f^*_r = \arg \min_{w \in \mathbb{R}^2} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 \text{ subject to } |w_1| + |w_2| \leq r \]

- Blue region: Area satisfying complexity constraint: $|w_1| + |w_2| \leq r$
- Red lines: contours of $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i - y_i)^2$.

KPM Fig. 13.3
The Empirical Risk for Square Loss

Denote the empirical risk of $f(x) = w^T x$ by

$$\hat{R}_n(w) = \frac{1}{n} \| Xw - y \|^2,$$

where X is the design matrix.

\hat{R}_n is minimized by $\hat{w} = (X^T X)^{-1} X^T y$, the OLS solution.

What does \hat{R}_n look like around \hat{w}?
By “completing the square”, we can show for any $w \in \mathbb{R}^d$:

$$
\hat{R}_n(w) = \frac{1}{n} (w - \hat{w})^T X^T X (w - \hat{w}) + \hat{R}_n(\hat{w})
$$

Set of w with $\hat{R}_n(w)$ exceeding $\hat{R}_n(\hat{w})$ by $c > 0$ is

$$
\left\{ w \mid \hat{R}_n(w) = c + \hat{R}_n(\hat{w}) \right\} = \left\{ w \mid (w - \hat{w})^T X^T X (w - \hat{w}) = nc \right\},
$$

which is an **ellipsoid centered at \hat{w}**.

We’ll derive this in homework.
The Famous Picture for ℓ_2 Regularization

- $f^*_r = \arg\min_{\mathbf{w} \in \mathbb{R}^2} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$ subject to $\mathbf{w}_1^2 + \mathbf{w}_2^2 \leq r$

Blue region: Area satisfying complexity constraint: $\mathbf{w}_1^2 + \mathbf{w}_2^2 \leq r$

Red lines: contours of $\hat{R}_n(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$.

KPM Fig. 13.3
Why are Lasso Solutions Often Sparse?

- Suppose design matrix X is orthogonal, so $X^T X = I$, and contours are circles.
- Then OLS solution in green or red regions implies ℓ_1 constrained solution will be at corner

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6
The \((\ell_q)^q\) Constraint

- Generalize to \(\ell_q: (\|w\|_q)^q = |w_1|^q + |w_2|^q\).
- Note: \(\|w\|_q\) is a norm if \(q \geq 1\), but not for \(q \in (0,1)\).
- \(\mathcal{F} = \{f(x) = w_1 x_1 + w_2 x_2\}\).
- Contours of \(\|w\|_q^q = |w_1|^q + |w_2|^q\):
ℓ_q Even Sparser

Suppose design matrix X is orthogonal, so $X^TX = I$, and contours are circles. Then OLS solution in green or red regions implies $ℓ_q$ constrained solution will be at corner $ℓ_q$-ball constraint is not convex, so more difficult to optimize.

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.9
From Quora: “Why is L1 regularization supposed to lead to sparsity than L2? [sic]” (google it)

Does this picture have any interpretation that makes sense? (Aren’t those lines supposed to be ellipses?)

Yes... we can revisit.
Finding the Lasso Solution: Lasso as Quadratic Program
How to find the Lasso solution?

- How to solve the Lasso?

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_1$$

- $\|w\|_1 = |w_1| + |w_2|$ is not differentiable!
Consider any number $a \in \mathbb{R}$.

Let the **positive part** of a be

$$a^+ = a1(a \geq 0).$$

Let the **negative part** of a be

$$a^- = -a1(a \leq 0).$$

Do you see why $a^+ \geq 0$ and $a^- \geq 0$?

How do you write a in terms of a^+ and a^-?

How do you write $|a|$ in terms of a^+ and a^-?
How to find the Lasso solution?

- The Lasso problem

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_1$$

- Replace each w_i by $w_i^+ - w_i^-$.
- Write $w^+ = (w_1^+, \ldots, w_d^+)$ and $w^- = (w_1^-, \ldots, w_d^-)$.

The Lasso as a Quadratic Program

We will show: substituting $w = w^+ - w^-$ and $|w| = w^+ + w^-$ gives an equivalent problem:

$$\min_{w^+, w^-} \sum_{i=1}^{n} \left((w^+ - w^-)^T x_i - y_i \right)^2 + \lambda_1^T (w^+ + w^-)$$

subject to $w_i^+ \geq 0$ for all i, $w_i^- \geq 0$ for all i,

- Objective is differentiable (in fact, convex and quadratic)
- $2d$ variables vs d variables and $2d$ constraints vs no constraints
- A “quadratic program”: a convex quadratic objective with linear constraints.
 - Could plug this into a generic QP solver.
Possible point of confusion

Equivalent to lasso problem:

\[
\min_{w^+, w^-} \sum_{i=1}^{n} \left((w^+ - w^-)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T (w^+ + w^-)
\]

subject to \(w_i^+ \geq 0 \) for all \(i \) \(\quad w_i^- \geq 0 \) for all \(i \),

- When we plug this optimization problem into a QP solver,
 - it just sees \(2d \) variables and \(2d \) constraints.
 - Doesn’t know we want \(w_i^+ \) and \(w_i^- \) to be positive and negative parts of \(w_i \).

- Turns out – they will come out that way as a result of the optimization!

- But to eliminate confusion, let’s start by calling them \(a_i \) and \(b_i \) and prove our claim...
The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

\[
\min_w \min_{a,b} \sum_{i=1}^{n} \left((a - b)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T (a + b)
\]

subject to \(a_i \geq 0 \) for all \(i \) \quad \(b_i \geq 0 \) for all \(i \),
\[a - b = w \]
\[a + b = |w| \]

- Claim: Don’t need constraint \(a + b = |w| \).
- \(a' \leftarrow a - \min(a, b) \) and \(b' \leftarrow b - \min(a, b) \) at least as good
- So if \(a \) and \(b \) are minimizers, at least one is 0.
- Since \(a - b = w \), we must have \(a = w^+ \) and \(b = w^- \). So also \(a + b = |w| \).
The Lasso as a Quadratic Program

\[
\min_w \min_{a,b} \sum_{i=1}^n \left((a - b)^T x_i - y_i \right)^2 + \lambda 1^T (a + b)
\]

subject to \(a_i \geq 0 \) for all \(i \), \(b_i \geq 0 \) for all \(i \),
\(a - b = w \)

- Claim: Can remove \(\min_w \) and the constraint \(a - b = w \).
- One way to see this is by switching the order of minimization...
The Lasso as a Quadratic Program

\[
\min_{a,b} \min_w \sum_{i=1}^n \left((a-b)^T x_i - y_i \right)^2 + \lambda 1^T (a+b)
\]

subject to \(a_i \geq 0\) for all \(i\), \(b_i \geq 0\) for all \(i\),
\(a - b = w\)

- For any \(a \geq 0, b \geq 0\), there’s always a single \(w\) that satisfies the constraints.
- So the inner minimum is always attained at \(w = a - b\).
- Since \(w\) doesn’t show up in the objective function,
 - nothing changes if we drop \(\min_w\) and the constraint.
The Lasso as a Quadratic Program

- So lasso optimization problem is equivalent to

\[
\min_{a,b} \sum_{i=1}^{n} \left((a - b)^T x_i - y_i \right)^2 + \lambda 1^T (a + b)
\]

subject to \(a_i \geq 0 \) for all \(i \) \(b_i \geq 0 \) for all \(i \),

where at the end we take \(w^* = a^* - b^* \) (and we’ve shown above that \(a^* \) and \(b^* \) are positive and negative parts of \(w^* \), respectively.)

- Has constraints – how do we optimize?
Projected SGD

\[
\min_{w^+ , w^- \in \mathbb{R}^d} \sum_{i=1}^{n} \left((w^+ - w^-)^T x_i - y_i \right)^2 + \lambda_1^T (w^+ + w^-)
\]

subject to \(w^+_i \geq 0 \) for all \(i \)
\[
w^-_i \geq 0 \text{ for all } i
\]

- Just like SGD, but after each step
 - Project \(w^+ \) and \(w^- \) into the constraint set.
 - In other words, if any component of \(w^+ \) or \(w^- \) becomes negative, set it back to 0.
Finding the Lasso Solution: Coordinate Descent (Shooting Method)
Coordinate Descent Method

- **Goal:** Minimize \(L(w) = L(w_1, \ldots, w_d) \) over \(w = (w_1, \ldots, w_d) \in \mathbb{R}^d \).

 - In gradient descent or SGD,
 - each step potentially changes all entries of \(w \).
 - In each step of **coordinate descent**,
 - we adjust only a single \(w_i \).
 - In each step, solve
 \[
 w_i^{\text{new}} = \arg \min_{w_i} L(w_1, \ldots, w_{i-1}, w_i, w_{i+1}, \ldots, w_d)
 \]

 Solving this argmin may itself be an iterative process.

- Coordinate descent is great when
 - it’s easy or easier to minimize w.r.t. one coordinate at a time
Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \ldots, w_d)$ over $w = (w_1, \ldots, w_d) \in \mathbb{R}^d$.

- **Initialize** $w^{(0)} = 0$
- **while** not converged:
 - Choose a coordinate $j \in \{1, \ldots, d\}$
 - $w^{\text{new}}_j \leftarrow \arg \min_{w_j} L(w_1^{(t)}, \ldots, w_{j-1}^{(t)}, w_j, w_{j+1}^{(t)}, \ldots, w_d^{(t)})$
 - $w^{(t+1)}_j \leftarrow w^{\text{new}}_j$ and $w^{(t+1)} \leftarrow w^{(t)}$
 - $t \leftarrow t + 1$

- Random coordinate choice \implies **stochastic coordinate descent**
- Cyclic coordinate choice \implies **cyclic coordinate descent**

In general, we will adjust each coordinate several times.
Why mention coordinate descent for Lasso?

In Lasso, the coordinate minimization has a **closed form solution!**
Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

\[
\hat{w}_j = \arg \min_{w_j \in \mathbb{R}} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda |w|_1
\]

Then

\[
\hat{w}_j = \begin{cases}
(c_j + \lambda) / a_j & \text{if } c_j < -\lambda \\
0 & \text{if } c_j \in [-\lambda, \lambda] \\
(c_j - \lambda) / a_j & \text{if } c_j > \lambda
\end{cases}
\]

\[
a_j = 2 \sum_{i=1}^{n} x_{i,j}^2 \\
c_j = 2 \sum_{i=1}^{n} x_{i,j} (y_i - w_{-j}^T x_{i,-j})
\]

where \(w_{-j} \) is \(w \) without component \(j \) and similarly for \(x_{i,-j} \).
Suppose we’re minimizing \(f : \mathbb{R}^d \to \mathbb{R} \).

Sufficient conditions:

1. \(f \) is continuously differentiable and
2. \(f \) is strictly convex in each coordinate

But lasso objective

\[
\sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_1
\]

is not differentiable...

Luckily there are weaker conditions...
Theorem

\textit{If the objective } f \textit{ has the following structure}

\[f(w_1, \ldots, w_d) = g(w_1, \ldots, w_d) + \sum_{j=1}^{d} h_j(w_j), \]

\textit{where}

- \(g : \mathbb{R}^d \rightarrow \mathbb{R} \) is differentiable and convex, and
- each \(h_j : \mathbb{R} \rightarrow \mathbb{R} \) is convex (but not necessarily differentiable)

\textit{then the coordinate descent algorithm converges to the global minimum.}

aTseng 2001: "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization"
Coordinate Descent Method – Variation

- Suppose there’s no closed form? (e.g. logistic regression)
- Do we really need to fully solve each inner minimization problem?
- A single projected gradient step is enough for ℓ_1 regularization!
 - Shalev-Shwartz & Tewari’s “Stochastic Methods...” (2011)
Stochastic Coordinate Descent for Lasso – Variation

- Let $\tilde{w} = (w^+, w^-) \in \mathbb{R}^{2d}$ and

$$L(\tilde{w}) = \sum_{i=1}^{n} \left((w^+ - w^-)^T x_i - y_i \right)^2 + \lambda (w^+ + w^-)$$

Stochastic Coordinate Descent for Lasso - Variation

Goal: Minimize $L(\tilde{w})$ s.t. $w_i^+, w_i^- \geq 0$ for all i.

- **Initialize** $\tilde{w}^{(0)} = 0$
- **while** not converged:
 - Randomly choose a coordinate $j \in \{1, \ldots, 2d\}$
 - $\tilde{w}_j \leftarrow \tilde{w}_j + \max\{-\tilde{w}_j, -\nabla_j L(\tilde{w})\}$