Loss Functions for Regression and Classification

David S. Rosenberg

New York University

February 6, 2018
Contents

1 Regression Loss Functions

2 Classification Loss Functions
Regression Loss Functions
Regression Notation

- Regression spaces:
 - Input space $\mathcal{X} = \mathbb{R}^d$
 - Action space $\mathcal{A} = \mathbb{R}$
 - Outcome space $\mathcal{Y} = \mathbb{R}$.
- Since $\mathcal{A} = \mathcal{Y}$, we can use more traditional notation:
 - \hat{y} is the predicted value (the action)
 - y is the actual observed value (the outcome)
Loss Functions for Regression

- In general, loss function may take the form
 \[(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathbb{R}\]

- Regression losses usually only depend on the residual \(r = y - \hat{y}\).
 - what you have to add to your prediction to get the right answer

- Loss \(\ell(\hat{y}, y)\) is called **distance-based** if it
 1. only depends on the residual:
 \[\ell(\hat{y}, y) = \psi(y - \hat{y}) \text{ for some } \psi: \mathbb{R} \to \mathbb{R}\]
 2. loss is zero when residual is 0:
 \[\psi(0) = 0\]
Distance-Based Losses are Translation Invariant

- Distance-based losses are translation-invariant. That is,
 \[\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in \mathbb{R}. \]

- When might you not want to use a translation-invariant loss?

- Sometimes relative error \(\frac{\hat{y} - y}{y} \) is a more natural loss (but not translation-invariant)

- Often you can transform response \(y \) so it’s translation-invariant (e.g. log transform)
Some Losses for Regression

- **Residual:** \(r = y - \hat{y} \)
- **Square or \(\ell_2 \) Loss:** \(\ell(r) = r^2 \)
- **Absolute or Laplace or \(\ell_1 \) Loss:** \(\ell(r) = |r| \)

| \(y \) | \(\hat{y} \) | \(|r| = |y - \hat{y}| \) | \(r^2 = (y - \hat{y})^2 \) |
|-----|-----|----------------|----------------|
| 1 | 0 | 1 | 1 |
| 5 | 0 | 5 | 25 |
| 10 | 0 | 10 | 100 |
| 50 | 0 | 50 | 2500 |

- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.
Robustness refers to how affected a learning algorithm is by outliers.
Some Losses for Regression

- **Square** or ℓ_2 Loss: $\ell(r) = r^2$ (*not robust*)
- **Absolute** or **Laplace** Loss: $\ell(r) = |r|$ (*not differentiable*)
 - gives **median regression**
- **Huber** Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (*robust and differentiable*)

- x-axis is the residual $y - \hat{y}$.

KPM Figure 7.6

David S. Rosenberg (New York University)
Classification Loss Functions
The Classification Problem

- **Outcome space** \(\mathcal{Y} = \{-1, 1\} \)
- **Action space** \(\mathcal{A} = \{-1, 1\} \)
- **0-1 loss** for \(f : \mathcal{X} \to \{-1, 1\} \):
 \[
 \ell(f(x), y) = 1(f(x) \neq y)
 \]
- But let’s allow **real-valued predictions** \(f : \mathcal{X} \to \mathbb{R} \):
 \[
 f(x) > 0 \implies \text{Predict } 1 \\
 f(x) < 0 \implies \text{Predict } -1
 \]
The Score Function

- Action space $\mathcal{A} = \mathbb{R}$
- Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f : \mathcal{X} \rightarrow \mathbb{R}$

Definition

The value $f(x)$ is called the score for the input x.

- In this context, f may be called a score function.
- Intuitively, magnitude of the score represents the confidence of our prediction.
The Margin

Definition

The **margin** (or **functional margin**)
for predicted score \(\hat{y} \) and true class \(y \in \{-1, 1\} \) is \(y \hat{y} \).

- The margin often looks like \(yf(x) \), where \(f(x) \) is our score function.
- The margin is a measure of how **correct** we are.
 - If \(y \) and \(\hat{y} \) are the same sign, prediction is **correct** and margin is **positive**.
 - If \(y \) and \(\hat{y} \) have different sign, prediction is **incorrect** and margin is **negative**.
- We want to **maximize the margin**.
Most classification losses depend only on the margin.

Such a loss is called a **margin-based loss**.

(There is a related concept, the **geometric margin**, in the notes on hard-margin SVM.)
Empirical risk for 0–1 loss:

\[\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^{n} 1(y_i f(x_i) \leq 0) \]

Minimizing empirical 0–1 risk not computationally feasible

\(\hat{R}_n(f) \) is non-convex, not differentiable (in fact, discontinuous!). Optimization is **NP-Hard**.
Classification Losses

Zero-One loss: $\ell_{0-1} = 1(m \leq 0)$

- x-axis is margin: $m > 0 \iff$ correct classification
Classiﬁcation Losses

SVM/Hinge loss: \(\ell_{\text{Hinge}} = \max(1 - m, 0) \)

Hinge is a convex, upper bound on 0–1 loss. Not differentiable at \(m = 1 \).
We have a “margin error” when \(m < 1 \).
(Soft Margin) Linear Support Vector Machine

- Hypothesis space: \(\mathcal{F} = \{ f_w(x) = w^T x \mid w \in \mathbb{R}^d \} \).
- Loss: \(\ell(m) = \max(1 - m, 0) \) [Hinge loss – sometimes called SVM loss]
- Regularization: \(\ell_2 \)

\[
\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i f_w(x_i), 0) + \lambda \|w\|^2_2
\]
Logistic/Log loss: $\ell_{\text{Logistic}} = \log (1 + e^{-m})$

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).
What About Square Loss for Classification?

- Action space $\mathcal{A} = \mathbb{R}$
 Output space $\mathcal{Y} = \{-1, 1\}$
- Loss $\ell(f(x), y) = (f(x) - y)^2$.
- Turns out, can write this in terms of margin $m = f(x)y$:

 $$\ell(f(x), y) = (f(x) - y)^2 = (1 - f(x)y)^2 = (1 - m)^2$$

- Prove using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.
What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples).
May have higher sample complexity (i.e. needs more data) than hinge & logistic\(^1\).

\(^1\)Rosasco et al's "Are Loss Functions All the Same?" [Link](http://web.mit.edu/lrosasco/www/publications/loss.pdf)