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Motivation and Review: Support Vector Machines J
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The Classification Problem

Output space Y ={-1,1} Action space A =R
Real-valued prediction function f: X — R

The value f(x) is called the score for the input x.

Intuitively, magnitude of the score represents the confidence of our prediction.

Typical convention:

f(x) >0 = Predict 1
f(x) <0 = Predict —1

(But we can choose other thresholds...)

David S. Rosenberg (New York University) DS-GA 1003 May 9, 2020 4 /59



The Margin

@ The margin (or functional margin) for predicted score y and true class y € {—1,1} is yy.
@ The margin often looks like yf(x), where f(x) is our score function.
@ The margin is a measure of how correct we are.

e We want to maximize the margin.
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[Margin-Based] Classification Losses

SVM/Hinge loss: {Hinge = max{1—m,0} = (1—m)

Loss
== Zero_One

=== Hinge

0
Margin m=yf(x)

Not differentiable at m=1. We have a “margin error” when m < 1.
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[Soft Margin] Linear Support Vector Machine (No Intercept)

o Hypothesis space F = {f(x) =w'x|w e R}
@ Loss {(m) =max(0,1—m)

o {5 regularization
n
min max (0,1—y;w’x;) +A|w|3

d
weR 1
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SVM Optimization Problem (no intercept)

@ SVM objective function:

Jw) = %Z max (O, 1—y; [WTX,-]) +Allwl)?.
i=1

e Not differentiable... but let's think about gradient descent anyway.
@ Derivative of hinge loss {(m) = max(0,1—m):

0 m>1
U'(m=<¢—-1 m<1

undefined m=1
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“Gradient” of SVM Objective

@ We need gradient with respect to parameter vector w € RY:

Vil (yiw"x) = U (yiw”x)yix; (chain rule)
0 yiwTx;i>1
= —1 yiwTx; <1 | yix; (expanded m in ¢'(m))
undefined yiw'x =1
0 yiwTx; >1
= —VYiX; yiwTx; <1

undefined yiw’x; =1
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“Gradient” of SVM Objective

0 y,'WTX,' >1
Vil (yiw™x) = < —yix; yiwTx <1
undefined yiw'x; =1

So

Vullw) = V, (iZﬂ(inTxf)+7\||W||2>

i=1
1 n
= = ZVWE (y,-WTx,-) +2Aw
n
i=1
_ %Zi:y,—wa,-<1(_ini)+2)‘W all yiwTx; #1
undefined otherwise
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Gradient Descent on SVM Objective?

@ The gradient of the SVM objective is

Vadw)==" 3 (yx)+2Aw
ityiwTx;<1
when y;w T x; # 1 for all i, and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:
o If we start with a random w, will we ever hit exactly y;w’x; =17
o If we did, could we perturb the step size by € to miss such a point?

o Does it even make sense to check y;w ' x; = 1 with floating point numbers?
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Gradient Descent on SVM Objective?

o If we blindly apply gradient descent from a random starting point
e seems unlikely that we'll hit a point where the gradient is undefined.

@ Still, doesn’t mean that gradient descent will work if objective not differentiable!

@ Theory of subgradients and subgradient descent will clear up any uncertainty.
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Convexity and Sublevel Sets J
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Convex Sets

A set C is convex if the line segment between any two points in C lies in C.

KPM Fig. 7.4
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Convex and Concave Functions

Definition
A function f: RY — R is convex if the line segment connecting any two points on the graph of
f lies above the graph. f is concave if —f is convex.

) - USSR
v1)

KPM Fig. 7.5
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Examples of Convex Functions on R

Examples

@ x +— ax+ b is both convex and concave on R for all a,b € R.
x > |x|P for p > 1 is convex on R
x — e® is convex on R for all a€ R

Every norm on R" is convex (e.g. ||x|[1 and ||x||2)

Max: (x1,...,Xxn) = max{xy..., x,} is convex on R”"
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Simple Composition Rules

Examples
o If g is convex, and Ax+ b is an affine mapping, then g(Ax+ b) is convex.
o If g is convex then expg(x) is convex.
@ If g is convex and nonnegative and p > 1 then g(x)P is convex.

@ If g is concave and positive then logg(x) is concave

e If g is concave and positive then 1/g(x) is convex.
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Main Reference for Convex Optimization

@ Boyd and Vandenberghe (2004)

e Very clearly written, but has a ton of detail for a first pass.
e See the Extreme Abridgement of Boyd and Vandenberghe.

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization
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https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m

where fy, ..., f,, are convex functions.

Question: Is the < in the constraint just a convention? Could we also have used > or =7
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Level Sets and Sublevel Sets

Let f: RY — R be a function. Then we have the following definitions:
Definition

A level set or contour line for the value c is the set of points x € RY for which f(x) = c.

Definition

A sublevel set for the value c is the set of points x € R? for which f(x) < c.

Theorem

If f:R? = R is convex, then the sublevel sets are convex.

(Proof straight from definitions.)
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Convex Function

Plot courtesy of Brett Bernstein.
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Contour Plot Convex Function: Sublevel Set

.

Is the sublevel set {x| f(x) < 1} convex?

Plot courtesy of Brett Bernstein.
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Nonconvex Function

Plot courtesy of Brett Bernstein.
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Contour Plot Nonconvex Function: Sublevel Set

Is the sublevel set {x| f(x) < 1} convex?

Plot courtesy of Brett Bernstein.
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Fact: Intersection of Convex Sets is Convex

Plot courtesy of Brett Bernstein.
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Level and Superlevel Sets

Level sets and superlevel sets of convex functions are not generally convex.

Plot courtesy of Brett Bernstein.
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Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m

where fy, ..., fy, are convex functions.

@ What can we say about each constraint set {x | f;(x) < 0}7 (convex)

@ What can we say about the feasible set {x | fj(x) <0,i=1,...,m}? (convex)
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Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form
minimize f(x)
subject to xeC

where f is a convex function and C is a convex set.
An alternative “generic”’ convex optimization problem.
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Convex and Differentiable Functions J
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First-Order Approximation

@ Suppose f : R? — R is differentiable.
@ Predict f(y) given f(x) and Vf(x)?
o Linear (i.e. “first order”) approximation:

fly) =~ f(x)+VFf(x)T(y—x)
() /

Boyd & Vandenberghe Fig. 3.2
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First-Order Condition for Convex, Differentiable Function

@ Suppose f:R? — R is convex and differentiable.

e Then for any x,y € R?
fly) = f(x)+VF(x)T (y—x)

@ The linear approximation to f at x is a global underestimator of f:

()

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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First-Order Condition for Convex, Differentiable Function

@ Suppose f:R? — R is convex and differentiable

@ Then for any x,y € R?
fly) = F(x)+ V)T (y—x)

Corollary
If Vf(x) =0 then x is a global minimizer of f. J

For convex functions, local information gives global information.
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Subgradients
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Subgradients

Definition

A vector g € R? is a subgradient of f : R? — R at x if for all z,

flz) > f(x)+g" (z—x).

A

\/

Blue is a graph of f(x).
Each red line x — f(xg) +g " (x—xp) is a global lower bound on f(x).
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Subdifferential

Definitions
o f is subdifferentiable at x if 3 at least one subgradient at x.

@ The set of all subgradients at x is called the subdifferential: 0f(x)

Basic Facts J

@ f is convex and differentiable =— 0f(x) ={Vf(x)}.
@ Any point x, there can be 0, 1, or infinitely many subgradients.

@ 0f(x) =0 = f is not convex.
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Globla Optimality Condition

Definition

A vector g € R? is a subgradient of f : R? — R at x if for all z,

flz) = f(x)+g"(z—x).

Corollary

If0 € 0f (x), then x is a global minimizer of f.
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Subdifferential of Absolute Value
o Consider f(x) = x|

f(z) = |z| 0f(z)

@ Plot on right shows {(x,g) | x € R, g € 0f(x)}

Boyd EE364b: Subgradients Slides
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Plot courtesy of Brett Bernstein.
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Subgradients of f(xq,x2) = |x1|+2|xo|

@ Let's find the subdifferential of f(x1,x) = |x1| +2|x| at (3,0).

First coordinate of subgradient must be 1, from [x;| part (at x; = 3).
@ Second coordinate of subgradient can be anything in [—2,2].

So graph of h(x1,x2) =f(3,0)+g 7 (x1 —3,x2—0) is a global underestimate of f(xy,x2),
for any g = (g1,42), where g1 =1 and g» € [-2,2].
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Underestimating Hyperplane to f(x1,x2) = |x1|+ 2 [xo|

Plot courtesy of Brett Bernstein.
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Subdifferential on Contour Plot

7

9f(3,0) = {(L.7 | be [-2,2))

SN

W/

Contour plot of f(x1,x2) = |x1]+ 2|xs|, with set of subgradients at (3,0). .

David S. Rosenberg (New York University)
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Contour Lines and Gradients

@ For function f:RY — R,
o graph of function lives in RY*1,

o gradient and subgradient of f live in RY, and
o contours, level sets, and sublevel sets are in RY.
o f:R? — R continuously differentiable, V(xq) # 0, then V£ (xo) normal to level set
S={xeRY|f(x)=f(x)}.

@ Proof sketch in notes.
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Gradient orthogonal to sublevel sets

Vi(z)

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

@ A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.
o If f:RY — R has subgradient g at xg, then the hyperplane H orthogonal to g at xp must
support the level set S={x € R?|f(x) = f(xo) }.
Proof:
@ For any y, we have f(y) > f(xp) +& ' (y —xo). (def of subgradient)
o If y is strictly on side of H that g points in,

e then g7 (y—xp) > 0.
e So f(y) > f(xo).
e So y is not in the level set S.

@ .. All elements of S must be on H or on the —g side of H.
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Subgradient of f(x1,x2) = |x1| 4+ 2|xo|

g"(y—v) <0 w2

Z1

f) 2 f0) +4"(y—v) > fv)

Plot courtesy of Brett Bernstein.
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Subgradient of f(x1,x2) = |x1| 4+ 2|xo|

9Tly-v) <0 24

J0) 2 @) +9" =) > f(v)

@ Points on g side of H have larger f-values than f(xp). (from proof)
@ But points on —g side may not have smaller f-values.

@ So —g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent J
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Subgradient Descent

@ Suppose f is convex, and we start optimizing at xg.
@ Repeat
e Step in a negative subgradient direction:

x=x—tg,

where t > 0 is the step size and g € 97 (xg).

@ —g not a descent direction — can this work?
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Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.
o Let x=x9—tg, for g € 0f(xp).
@ Let z be any point for which f(z) < f(xp).
@ Then for small enough t >0,

[x = z|l2 < [[x0— z||2.

e Apply this with z=x* € argmin, f(x).

— Negative subgradient step gets us closer to minimizer.
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Subgradient Gets Us Closer To Minimizer (Proof)

Let x =xp —tg, for g € 0f (xp) and t > 0.
Let z be any point for which f(z) < f(xp).
Then

Ix—z|3 = |xo—tg—z|3
= |Ixo—z|53—2tg" (x0—2z)+t*||g]3
< xo—zl3—2tf(x0) — f(2)] + t3(|g|3

Consider —2t[f(xo) — f(2)] + t?||g|3-
e It's a convex quadratic (facing upwards).
o Has zeros at t =0 and t =2(f(x) —f(2)) /||g||3 > 0.

o Therefore, it's negative for any
ce (o.20bol_tial)
lells

Based on Boyd EE364b: Subgradients Slides
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Convergence Theorem for Fixed Step Size

Assume f : R" — R is convex and

@ f is Lipschitz continuous with constant G > 0:
()~ F(Y) < Gllx—y]| for all x,y

Theorem

For fixed step size t, subgradient method satisfies:

lim f(xbest) f(x*)+ G?%t/2

k—o00

Based on https://www.cs.cmu.edu/ ggordon/10725-F12/slides/06- sg-method.pdf
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Convergence Theorems for Decreasing Step Sizes

Assume f : R" — R is convex and

@ f is Lipschitz continuous with constant G > 0:
()~ F(Y) < Gllx—y]| for all x,y

Theorem

For step size respecting Robbins-Monro conditions,

lim F(x5)) = F(x*)

k—00

Based on https://www.cs.cmu.edu/ ggordon/10725-F12/slides/06- sg-method.pdf
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Subgradient for Lasso (written by Xintian Han) J
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The Lasso Problem

@ Lasso problem can be parametrized as

1 2
Mr/’glgd (w) n;_l{W Xi yl} +Allw(l1

@ We could solve Lasso by Shooting Method and Projected SGD.

e How about using SGD?

o ||w|1=|wi|+|wa|is not differentiable!
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Gradient Descent on Lasso Objective?

@ The partial gradient of the Lasso objective is

1 n
Vwd(w) = ;ZZ{WTXJ-—yj}Xj—i—?\-sign(W)
j=1

when w; # 0 for all /, and otherwise is undefined.
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Important Properties of Subdifferential

o If fi,...,fn:RY — R are convex functions and f = f; +--- + f, then
Of (x) =0 (x)+ -+ 0fm(x).
@ For >0, 0(af)(x) = xdf(x).
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Subgradients of f(x) = ||x||1

o Let's find the subdifferential of f(x) = ||x||1 = 27:1 Ixj| at any given point
x9 = (X{),xg,...,xg).

@ By an important property of subdifferential: If f =f; +---+f,,, then
of (x) =0A(x)+---0fpm(x).

@ We could calculate the subgradient of f(x) = |x;| and sum them up.

o The subgradient g/ = (gi,... ,g(",) of fi(x) = |x;| at x0 = (x?,xJ, ...,xg) is:

g =0, j#i; g=s(x) j=i
where s(x) =sign(x) if x #20 and s(x) € [-1,1] if x=0
@ We sum all the g’ up to get the subgradient g = (g1, ..., gq) of f(x) at x°:

?)

gi=s(x;) foralli
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Subgradient Descent for Lasso Problem

@ Lasso problem can be parametrized as

1 o 2
Mr/’rélgd (w) n;{w xi—yi} +A[wl

@ Subgradients of J(w) are

1 n
. Z 2{w X — yilxi + s,
i=1

where s; =sign(w;) if w; #0 and s; € [—1,1] if w; =0.
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Subgradient Descent for Lasso Problem: Potential Issues

@ Subgradient descent will work for all convex and Lipschitz continuous objective functions.
e BUT, convergence can be very slow for non-differentiable functions

@ One can often find better approaches by closer examination of the objective function. For
example, shooting method or projected SGD.

e Taking small steps in the direction of the (sub)gradient usually may not lead to zero
coordinates.

@ BUT, in practice, we can threshold small values.
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