Subgradient Descent

David S. Rosenberg

New York University

May 9, 2020

Contents

1 Motivation and Review: Support Vector Machines

- 2 Convexity and Sublevel Sets
- 3 Convex and Differentiable Functions
- 4 Subgradients
- 5 Subgradient Descent
- 6 Subgradient for Lasso (written by Xintian Han)

Motivation and Review: Support Vector Machines

The Classification Problem

- Output space $\mathcal{Y} = \{-1, 1\}$ Action space $\mathcal{A} = \mathbf{R}$
- Real-valued prediction function $f : \mathcal{X} \to \mathbf{R}$
- The value f(x) is called the score for the input x.
- Intuitively, magnitude of the score represents the confidence of our prediction.
- Typical convention:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

(But we can choose other thresholds...)

- The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.
- The margin often looks like yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are.
- We want to maximize the margin.

[Margin-Based] Classification Losses

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max\{1-m, 0\} = (1-m)_+$

Not differentiable at m = 1. We have a "margin error" when m < 1.

[Soft Margin] Linear Support Vector Machine (No Intercept)

- Hypothesis space $\mathcal{F} = \{f(x) = w^T x \mid w \in \mathbb{R}^d\}.$
- Loss $\ell(m) = \max(0, 1-m)$
- $\bullet \ \ell_2 \ regularization$

$$\min_{w \in \mathbf{R}^{d}} \sum_{i=1}^{n} \max(0, 1 - y_{i} w^{T} x_{i}) + \lambda \|w\|_{2}^{2}$$

SVM Optimization Problem (no intercept)

• SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i [w^T x_i]) + \lambda ||w||^2.$$

- Not differentiable... but let's think about gradient descent anyway.
- Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

$$\ell'(m) = \begin{cases} 0 & m > 1 \\ -1 & m < 1 \\ \text{undefined} & m = 1 \end{cases}$$

"Gradient" of SVM Objective

• We need gradient with respect to parameter vector $w \in \mathbf{R}^d$:

$$\nabla_{w}\ell(y_{i}w^{T}x_{i}) = \ell'(y_{i}w^{T}x_{i})y_{i}x_{i} \text{ (chain rule)}$$

$$= \begin{pmatrix} \begin{pmatrix} 0 & y_{i}w^{T}x_{i} > 1 \\ -1 & y_{i}w^{T}x_{i} < 1 \\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{pmatrix} y_{i}x_{i} \text{ (expanded } m \text{ in } \ell'(m))$$

$$= \begin{cases} 0 & y_{i}w^{T}x_{i} > 1 \\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1 \\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

"Gradient" of SVM Objective

$$\nabla_{w}\ell(y_{i}w^{T}x_{i}) = \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

$$\nabla_{w} J(w) = \nabla_{w} \left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i} w^{T} x_{i}\right) + \lambda ||w||^{2} \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \nabla_{w} \ell\left(y_{i} w^{T} x_{i}\right) + 2\lambda w$$
$$= \begin{cases} \frac{1}{n} \sum_{i:y_{i} w^{T} x_{i} < 1} (-y_{i} x_{i}) + 2\lambda w & \text{all } y_{i} w^{T} x_{i} \neq 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Gradient Descent on SVM Objective?

• The gradient of the SVM objective is

$$\nabla_{w}J(w) = \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}(-y_{i}x_{i})+2\lambda w$$

when $y_i w^T x_i \neq 1$ for all *i*, and **otherwise is undefined**.

Potential arguments for why we shouldn't care about the points of nondifferentiability:

- If we start with a random w, will we ever hit exactly $y_i w^T x_i = 1$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $y_i w^T x_i = 1$ with floating point numbers?

Gradient Descent on SVM Objective?

- If we blindly apply gradient descent from a random starting point
 - seems unlikely that we'll hit a point where the gradient is undefined.
- Still, doesn't mean that gradient descent will work if objective not differentiable!
- Theory of subgradients and subgradient descent will clear up any uncertainty.

Convexity and Sublevel Sets

Convex Sets

Definition

A set C is **convex** if the line segment between any two points in C lies in C.

Convex and Concave Functions

Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if the line segment connecting any two points on the graph of f lies above the graph. f is concave if -f is convex.

KPM Fig. 7.5

David S. Rosenberg (New York University)

Examples of Convex Functions on ${\bf R}$

Examples

- $x \mapsto ax + b$ is both convex and concave on **R** for all $a, b \in \mathbf{R}$.
- $x \mapsto |x|^p$ for $p \ge 1$ is convex on **R**
- $x \mapsto e^{ax}$ is convex on **R** for all $a \in \mathbf{R}$
- Every norm on \mathbb{R}^n is convex (e.g. $||x||_1$ and $||x||_2$)
- Max: $(x_1, \ldots, x_n) \mapsto \max\{x_1, \ldots, x_n\}$ is convex on \mathbb{R}^n

Examples

- If g is convex, and Ax + b is an affine mapping, then g(Ax + b) is convex.
- If g is convex then $\exp g(x)$ is convex.
- If g is convex and nonnegative and $p \ge 1$ then $g(x)^p$ is convex.
- If g is concave and positive then $\log g(x)$ is concave
- If g is concave and positive then 1/g(x) is convex.

Main Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
 - Very clearly written, but has a ton of detail for a first pass.
 - See the Extreme Abridgement of Boyd and Vandenberghe.

Stephen Boyd and Lieven Vandenberghe

Convex Optimization

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$

where f_0, \ldots, f_m are convex functions.

Question: Is the \leqslant in the constraint just a convention? Could we also have used \geqslant or =?

Level Sets and Sublevel Sets

Let $f : \mathbf{R}^d \to \mathbf{R}$ be a function. Then we have the following definitions:

Definition

A level set or contour line for the value c is the set of points $x \in \mathbb{R}^d$ for which f(x) = c.

Definition

A sublevel set for the value c is the set of points $x \in \mathbb{R}^d$ for which $f(x) \leq c$.

Theorem

If $f : \mathbb{R}^d \to \mathbb{R}$ is convex, then the sublevel sets are convex.

(Proof straight from definitions.)

Convex Function

Plot courtesy of Brett Bernstein.

Contour Plot Convex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leq 1\}$ convex?

Plot courtesy of Brett Bernstein.

Nonconvex Function

Plot courtesy of Brett Bernstein.

David S. Rosenberg (New York University)

Contour Plot Nonconvex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leq 1\}$ convex?

Plot courtesy of Brett Bernstein.

Fact: Intersection of Convex Sets is Convex

Plot courtesy of Brett Bernstein.

Level and Superlevel Sets

Level sets and superlevel sets of convex functions are **not** generally convex.

Plot courtesy of Brett Bernstein.

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize $f_0(x)$ subject to $f_i(x) \leq 0, i = 1, ..., m$

where f_0, \ldots, f_m are convex functions.

- What can we say about each constraint set $\{x \mid f_i(x) \leq 0\}$? (convex)
- What can we say about the feasible set $\{x \mid f_i(x) \leq 0, i = 1, ..., m\}$? (convex)

Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

where f is a convex function and C is a convex set. An alternative "generic" convex optimization problem.

Convex and Differentiable Functions

First-Order Approximation

- Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable.
- Predict f(y) given f(x) and $\nabla f(x)$?
- Linear (i.e. "first order") approximation:

$$f(y) \approx f(x) + \nabla f(x)^T (y - x)$$

Boyd & Vandenberghe Fig. 3.2

First-Order Condition for Convex, Differentiable Function

- Suppose $f : \mathbf{R}^d \to \mathbf{R}$ is convex and differentiable.
- Then for any $x, y \in \mathbf{R}^d$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

• The linear approximation to f at x is a global underestimator of f:

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

First-Order Condition for Convex, Differentiable Function

- Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable
- Then for any $x, y \in \mathbf{R}^d$

$$f(y) \ge f(x) + \nabla f(x)^{T}(y-x)$$

Corollary

If $\nabla f(x) = 0$ then x is a global minimizer of f.

For convex functions, local information gives global information.

Subgradients

Subgradients

Definition

A vector $g \in \mathbf{R}^d$ is a subgradient of $f : \mathbf{R}^d \to \mathbf{R}$ at x if for all z,

$$f(z) \geq f(x) + g^{T}(z-x).$$

Blue is a graph of f(x). Each red line $x \mapsto f(x_0) + g^T(x - x_0)$ is a global lower bound on f(x).

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the subdifferential: $\partial f(x)$

Basic Facts

- f is convex and differentiable $\implies \partial f(x) = \{\nabla f(x)\}.$
- Any point x, there can be 0, 1, or infinitely many subgradients.
- $\partial f(x) = \emptyset \implies f \text{ is not convex.}$

Globla Optimality Condition

Definition

A vector $g \in \mathbf{R}^d$ is a subgradient of $f : \mathbf{R}^d \to \mathbf{R}$ at x if for all z,

$$f(z) \geq f(x) + g^{T}(z-x).$$

Corollary

If $0 \in \partial f(x)$, then x is a global minimizer of f.

Subdifferential of Absolute Value

• Consider f(x) = |x|

• Plot on right shows $\{(x,g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

Boyd EE364b: Subgradients Slides

$f(x_1, x_2) = |x_1| + 2|x_2|$

Plot courtesy of Brett Bernstein.

Subgradients of $f(x_1, x_2) = |x_1| + 2|x_2|$

- Let's find the subdifferential of $f(x_1, x_2) = |x_1| + 2|x_2|$ at (3,0).
- First coordinate of subgradient must be 1, from $|x_1|$ part (at $x_1 = 3$).
- Second coordinate of subgradient can be anything in [-2, 2].
- So graph of $h(x_1, x_2) = f(3, 0) + g^T (x_1 3, x_2 0)$ is a global underestimate of $f(x_1, x_2)$, for any $g = (g_1, g_2)$, where $g_1 = 1$ and $g_2 \in [-2, 2]$.

Underestimating Hyperplane to $f(x_1, x_2) = |x_1| + 2|x_2|$

Plot courtesy of Brett Bernstein.

Subdifferential on Contour Plot

Contour plot of $f(x_1, x_2) = |x_1| + 2|x_2|$, with set of subgradients at (3,0).

Contour Lines and Gradients

- For function $f : \mathbf{R}^d \to \mathbf{R}$,
 - graph of function lives in \mathbf{R}^{d+1} ,
 - gradient and subgradient of f live in \mathbf{R}^d , and
 - contours, level sets, and sublevel sets are in R^d.
- $f: \mathbb{R}^d \to \mathbb{R}$ continuously differentiable, $\nabla f(x_0) \neq 0$, then $\nabla f(x_0)$ normal to level set

$$S = \left\{ x \in \mathbf{R}^d \mid f(x) = f(x_0) \right\}.$$

• Proof sketch in notes.

Gradient orthogonal to sublevel sets

Plot courtesy of Brett Bernstein.

Contour Lines and Subgradients

- A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.
- If $f : \mathbb{R}^d \to \mathbb{R}$ has subgradient g at x_0 , then the hyperplane H orthogonal to g at x_0 must support the level set $S = \{x \in \mathbb{R}^d \mid f(x) = f(x_0)\}.$

Proof:

- For any y, we have $f(y) \ge f(x_0) + g^T(y x_0)$. (def of subgradient)
- If y is strictly on side of H that g points in,
 - then $g^{T}(y-x_{0}) > 0$.
 - So $f(y) > f(x_0)$.
 - So y is not in the level set S.
- \therefore All elements of S must be on H or on the -g side of H.

Subgradient of $f(x_1, x_2) = |x_1| + 2|x_2|$

Plot courtesy of Brett Bernstein.

Subgradient of $f(x_1, x_2) = |x_1| + 2|x_2|$

- Points on g side of H have larger f-values than $f(x_0)$. (from proof)
- But points on -g side may **not** have smaller *f*-values.
- So -g may **not** be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.

Subgradient Descent

- Suppose f is convex, and we start optimizing at x_0 .
- Repeat
 - Step in a negative subgradient direction:

 $x = x_0 - tg$,

where t > 0 is the step size and $g \in \partial f(x_0)$.

• -g not a descent direction – can this work?

Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$.
- Let z be any point for which $f(z) < f(x_0)$.
- Then for small enough t > 0,

$$||x-z||_2 < ||x_0-z||_2.$$

- Apply this with $z = x^* \in \operatorname{arg\,min}_x f(x)$.
- \implies Negative subgradient step gets us closer to minimizer.

Subgradient Gets Us Closer To Minimizer (Proof)

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$ and t > 0.
- Let z be any point for which $f(z) < f(x_0)$.

• Then

$$\begin{aligned} \|x - z\|_{2}^{2} &= \|x_{0} - tg - z\|_{2}^{2} \\ &= \|x_{0} - z\|_{2}^{2} - 2tg^{T}(x_{0} - z) + t^{2}\|g\|_{2}^{2} \\ &\leqslant \|x_{0} - z\|_{2}^{2} - 2t[f(x_{0}) - f(z)] + t^{2}\|g\|_{2}^{2} \end{aligned}$$

- Consider $-2t[f(x_0) f(z)] + t^2 ||g||_2^2$.
 - It's a convex quadratic (facing upwards).
 - Has zeros at t = 0 and $t = 2(f(x_0) f(z)) / ||g||_2^2 > 0$.
 - Therefore, it's negative for any

$$t \in \left(0, \frac{2(f(x_0) - f(z))}{\|g\|_2^2}\right).$$

Based on Boyd EE364b: Subgradients Slides

Convergence Theorem for Fixed Step Size

Assume $f : \mathbf{R}^n \to \mathbf{R}$ is convex and

• f is Lipschitz continuous with constant G > 0:

 $|f(x) - f(y)| \leq G ||x - y||$ for all x, y

Theorem

For fixed step size t, subgradient method satisfies:

$$\lim_{k \to \infty} f(x_{best}^{(k)}) \leqslant f(x^*) + G^2 t/2$$

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf

Convergence Theorems for Decreasing Step Sizes

Assume $f : \mathbf{R}^n \to \mathbf{R}$ is convex and

• f is Lipschitz continuous with constant G > 0:

 $|f(x) - f(y)| \leq G ||x - y||$ for all x, y

Theorem

For step size respecting Robbins-Monro conditions,

$$\lim_{k \to \infty} f(x_{best}^{(k)}) = f(x^*)$$

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf

Subgradient for Lasso (written by Xintian Han)

• Lasso problem can be parametrized as

$$\min_{w \in \mathbf{R}^{d}} J(w) = \frac{1}{n} \sum_{i=1}^{n} \left\{ w^{T} x_{i} - y_{i} \right\}^{2} + \lambda \|w\|_{1}$$

- We could solve Lasso by Shooting Method and Projected SGD.
- How about using SGD?
- $||w||_1 = |w_1| + |w_2|$ is not differentiable!

Gradient Descent on Lasso Objective?

• The partial gradient of the Lasso objective is

$$\nabla_{w} J(w) = \frac{1}{n} \sum_{j=1}^{n} 2\{w^{T} x_{j} - y_{j}\} x_{j} + \lambda \cdot \operatorname{sign}(w)$$

when $w_i \neq 0$ for all *i*, and **otherwise is undefined**.

Important Properties of Subdifferential

- If $f_1, \ldots, f_m : \mathbb{R}^d \to \mathbb{R}$ are convex functions and $f = f_1 + \cdots + f_m$, then $\partial f(x) = \partial f_1(x) + \cdots + \partial f_m(x)$.
- For $\alpha \ge 0$, $\partial(\alpha f)(x) = \alpha \partial f(x)$.

Subgradients of $f(x) = ||x||_1$

- Let's find the subdifferential of $f(x) = ||x||_1 = \sum_{i=1}^d |x_i|$ at any given point $x^0 = (x_1^0, x_2^0, \dots, x_d^0)$.
- By an important property of subdifferential: If $f = f_1 + \cdots + f_m$, then $\partial f(x) = \partial f_1(x) + \cdots \partial f_m(x)$.
- We could calculate the subgradient of $f^i(x) = |x_i|$ and sum them up.
- The subgradient $g^i = (g_1^i, \dots, g_d^i)$ of $f^i(x) = |x_i|$ at $x^0 = (x_1^0, x_2^0, \dots, x_d^0)$ is:

$$g_j^i = 0, \quad j \neq i; \quad g_j^i = s(x_j^0), \quad j = i,$$

where $s(x) = \operatorname{sign}(x)$ if $x \neq 0$ and $s(x) \in [-1, 1]$ if x = 0

• We sum all the g^i up to get the subgradient $g = (g_1, \ldots, g_d)$ of f(x) at x^0 :

$$g_i = s(x_i^0)$$
 for all i

Subgradient Descent for Lasso Problem

• Lasso problem can be parametrized as

$$\min_{w \in \mathbf{R}^d} J(w) = \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_1$$

• Subgradients of J(w) are

$$\frac{1}{n}\sum_{i=1}^{n}2\{w^{T}x_{i}-y_{i}\}x_{i}+\lambda s,$$

where $s_i = \operatorname{sign}(w_i)$ if $w_i \neq 0$ and $s_i \in [-1, 1]$ if $w_i = 0$.

Subgradient Descent for Lasso Problem: Potential Issues

- Subgradient descent will work for all convex and Lipschitz continuous objective functions.
- BUT, convergence can be very **slow** for non-differentiable functions
- One can often find better approaches by closer examination of the objective function. For example, shooting method or projected SGD.
- Taking small steps in the direction of the (sub)gradient usually may **not** lead to zero coordinates.
- BUT, in practice, we can threshold small values.