The Representer Theorem

David S. Rosenberg

New York University

February 13, 2018
Contents

1 Inner Product Spaces and Projections (Hilbert Spaces)

2 Representer Theorem
Inner Product Spaces and Projections (Hilbert Spaces)
An **inner product space** (over reals) is a vector space \mathcal{V} and an **inner product**, which is a mapping

$$\langle \cdot , \cdot \rangle : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbb{R}$:

- **Symmetry:** $\langle x, y \rangle = \langle y, x \rangle$
- **Linearity:** $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- **Positive-definiteness:** $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \iff x = 0$.
For an inner product space, we define a norm as

$$\|x\| = \sqrt{\langle x, x \rangle}.$$

Example

\mathbb{R}^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \quad \forall x, y \in \mathbb{R}^d.$$

Norm is

$$\|x\| = \sqrt{x^T x}.$$
What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm $\| \cdot \|$ can be written in terms of an inner product on \mathcal{V} iff $\forall x, x' \in \mathcal{V}$

$$2\|x\|^2 + 2\|x'\|^2 = \|x + x'\|^2 + \|x - x'\|^2,$$

and if it can, the inner product is given by the **polarization identity**

$$\langle x, x' \rangle = \frac{\|x\|^2 + \|x'\|^2 - \|x - x'\|^2}{2}.$$

Example

ℓ_1 norm on \mathbb{R}^d is NOT generated by an inner product. [Exercise]

Is ℓ_2 norm on \mathbb{R}^d generated by an inner product?
Definition

Two vectors are **orthogonal** if \(\langle x, x' \rangle = 0 \). We denote this by \(x \perp x' \).

Definition

\(x \) is orthogonal to a set \(S \), i.e. \(x \perp S \), if \(x \perp s \) for all \(x \in S \).
Proof.
We have
\[
\|x + x'|^2 = \langle x + x', x + x' \rangle \\
= \langle x, x \rangle + \langle x, x' \rangle + \langle x', x \rangle + \langle x', x' \rangle \\
= \|x\|^2 + \|x'\|^2.
\]
Choose some $x \in \mathcal{V}$.

Let M be a subspace of inner product space \mathcal{V}.

Then m_0 is the **projection of x onto M**, if $m_0 \in M$ and is the closest point to x in M.

In math: For all $m \in M$,
\[
\|x - m_0\| \leq \|x - m\|.
\]
Projections exist for all finite-dimensional inner product spaces.
We want to allow infinite-dimensional spaces.
Need an extra condition called completeness.
A space is complete if all Cauchy sequences in the space converge.

Definition

A Hilbert space is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.
The Projection Theorem

Theorem (Classical Projection Theorem)

- \mathcal{H} a Hilbert space
- M a closed subspace of \mathcal{H} (picture a hyperplane through the origin)
- For any $x \in \mathcal{H}$, there exists a unique $m_0 \in M$ for which
 \[\|x - m_0\| \leq \|x - m\| \quad \forall m \in M. \]
- This m_0 is called the [orthogonal] projection of x onto M.
- Furthermore, $m_0 \in M$ is the projection of x onto M iff
 \[x - m_0 \perp M. \]
Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathcal{H}. For any $x \in \mathcal{H}$, let $m_0 = \text{Proj}_M x$ be the projection of x onto M. Then

$$\|m_0\| \leq \|x\|,$$

with equality only when $m_0 = x$.

Proof.

\[
\|x\|^2 = \|m_0 + (x - m_0)\|^2 \quad \text{(note: $x - m_0 \perp m_0$ by Projection theorem)}
\]
\[
= \|m_0\|^2 + \|x - m_0\|^2 \quad \text{by Pythagorean theorem}
\]
\[
\|m_0\|^2 = \|x\|^2 - \|x - m_0\|^2
\]

Then $\|x - m_0\|^2 \geq 0$ implies $\|m_0\|^2 \leq \|x\|^2$. If $\|x - m_0\|^2 = 0$, then $x = m_0$, by definition of norm.
Representer Theorem
Generalize from SVM Objective

- **SVM objective:**
 \[
 \min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + c \sum_{i=1}^{n} \max(0, 1 - y_i \langle w, x_i \rangle).
 \]

- **Generalized objective:**
 \[
 \min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle),
 \]

 where
 - \(R : [0, \infty) \rightarrow \mathbb{R} \) is nondecreasing (Regularization term)
 - and \(L : \mathbb{R}^n \rightarrow \mathbb{R} \) is arbitrary. (Loss term)
General Objective Function for Linear Hypothesis Space (Details)

- **Generalized objective:**

\[
\min_{w \in H} R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle),
\]

where

- \(w, x_1, \ldots, x_n \in \mathcal{H} \) for some Hilbert space \(\mathcal{H} \). (We typically have \(\mathcal{H} = \mathbb{R}^d \).)
- \(\| \cdot \| \) is the norm corresponding to the inner product of \(\mathcal{H} \). (i.e. \(\| w \| = \sqrt{\langle w, w \rangle} \))
- \(R : [0, \infty) \to \mathbb{R} \) is nondecreasing (Regularization term), and
- \(L : \mathbb{R}^n \to \mathbb{R} \) is arbitrary (Loss term).
General Objective Function for Linear Hypothesis Space (Details)

- **Generalized objective**:
 \[\min_{w \in H} R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle) , \]

- **What’s “linear”?**
- The prediction/score function \(x \mapsto \langle w, x_i \rangle \) is linear – in what?
 - in parameter vector \(w \), and
 - in the feature vector \(x_i \).

- **Why?** [Real-valued] inner products are linear in each argument.

- **The important part is the linearity in the parameter \(w \).**
General Objective Function for Linear Hypothesis Space (Details)

- **Generalized objective:**

 \[
 \min_{w \in H} R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle),
 \]

- Ridge regression and SVM are of this form.

- What if we penalize with \(\lambda \|w\|_2\) instead of \(\lambda \|w\|_2^2\)? Yes!

- What if we use lasso regression? No! \(\ell_1\) norm does not correspond to an inner product.
The Representer Theorem

Theorem (Representer Theorem)
Let

\[J(w) = R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle), \]

where

- \(w, x_1, \ldots, x_n \in \mathcal{H} \) for some Hilbert space \(\mathcal{H} \). (We typically have \(\mathcal{H} = \mathbb{R}^d \).)
- \(\| \cdot \| \) is the norm corresponding to the inner product of \(\mathcal{H} \). (i.e. \(\|w\| = \sqrt{\langle w, w \rangle} \))
- \(R : [0, \infty) \rightarrow \mathbb{R} \) is nondecreasing (Regularization term), and
- \(L : \mathbb{R}^n \rightarrow \mathbb{R} \) is arbitrary (Loss term).

Then

- If \(M = \text{span}(x_1, \ldots, x_n) \), then \(J(\text{Proj}_M w) \leq J(w) \) for any \(w \in \mathcal{H} \).
- If \(J(w) \) has a minimizer, then it has a minimizer of the form \(w^* = \sum_{i=1}^{n} \alpha_i x_i \).
- If \(R \) is strictly increasing, then all minimizers have this form. (Proof in homework.)
Fix any \(w \in \mathcal{H} \).

Let \(w_M = \text{Proj}_M w \).

Then \(w_M^\perp := w - w_M \) is orthogonal to \(M \).

So \(\langle w, x_i \rangle = \langle w_M + w_M^\perp, x_i \rangle = \langle w_M, x_i \rangle \) \(\forall i \), and

\[
L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle) = L(\langle w_M, x_1 \rangle, \ldots, \langle w_M, x_n \rangle).
\]

Projections decrease norms: \(\|w_M\| \leq \|w\| \).

Since \(R \) is nondecreasing, \(R(\|w_M\|) \leq R(\|w\|) \).

\(J(w_M) \leq J(w) \). [Proves first result.]

If \(w^* \) minimizes \(J(w) \), then \(w^*_M = \text{Proj}_M w^* \) is also a minimizer, since \(J(w^*_M) \leq J(w^*) \).

So \(\exists \alpha \text{ s.t. } w^*_M = \sum_{i=1}^n \alpha_i x_i \) is a minimizer of \(J(w) \).

Q.E.D.
Theorem

\[J(w) = R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle), \]

and let \(M = \text{span}(x_1, \ldots, x_n) \). Then under the same conditions given in the Representer theorem, if \(w^*_M \) minimizes \(J(w) \) over the set \(M \), then \(w^*_M \) minimizes \(J(w) \) over all \(\mathcal{H} \).

\(^a\)Thanks to Mingsi Long for suggesting this nice theorem and proof.

- One consequence of the Representer theorem only applies if \(J(w) \) has a minimizer over \(\mathcal{H} \). This theorem tells us that it’s sufficient to check for a constrained minimizer of \(J(w) \) over \(M \). If one exists, then it’s also an unconstrained minimizer of \(J(w) \) over \(\mathcal{H} \). If there is no constrained minimizer over \(M \), then \(J(w) \) has no minimizer over \(\mathcal{H} \) (by the Representer theorem).

- Bottom Line: We can jump straight to minimizing over \(M \), the “span of the data”.
Let $w_M^* \in \arg \min_{w \in M} J(w)$. [the constrained minimizer]

Consider any $w \in \mathcal{H}$.

Let $w_M = \text{Proj}_M w$.

By the Representer theorem, $J(w_M) \leq J(w)$.

$J(w_M^*) \leq J(w_M)$ by definition of w_M^*.

Thus for any $w \in \mathcal{H}$, $J(w_M^*) \leq J(w)$.

Therefore w_M^* minimizes $J(w)$ over \mathcal{H}.

QED