Kernel Methods

David S. Rosenberg

New York University

February 20, 2018
Contents

1 Big Feature Spaces for Linear Models
2 Kernel Methods: Motivation
3 The Representer Theorem to Kernelize
4 Kernel Ridge Regression
5 Kernel SVM
6 Kernels
7 The RBF Kernel
8 When is $k(x,x')$ a kernel function? (Mercer’s Theorem)
Big Feature Spaces for Linear Models
The Input Space \mathcal{X}

- Our general learning theory setup: no assumptions about \mathcal{X}
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we’ve developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on \mathbb{R}^d:
 \[\mathcal{F} = \{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}. \]
- What if we want to do prediction on inputs not natively in \mathbb{R}^d?
Feature Extraction

Definition
Mapping an input from \mathcal{X} to a vector in \mathbb{R}^d is called **feature extraction** or **featurization**.

\[\phi(x) \in \mathbb{R}^d \]
- Input space: \(X \) (no assumptions)
- Introduce feature map \(\psi : X \rightarrow \mathbb{R}^d \)
- The feature map maps into the feature space \(\mathbb{R}^d \).
- Hypothesis space of affine functions on feature space:

\[
\mathcal{F} = \{ x \mapsto w^T \psi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.
\]
Geometric Example: Two class problem, nonlinear boundary

- With identity feature map $\psi(x) = (x_1, x_2)$ and linear models, can’t separate regions
- With appropriate featurization $\psi(x) = (x_1, x_2, x_1^2 + x_2^2)$, becomes linearly separable.

Video: http://youtu.be/3liCbRZPrZA
For linear models, to grow the hypothesis spaces, we must add features.

Sometimes we say a larger hypothesis is “more expressive”.
- (can fit more relationships between input and action)

The previous lecture on “Features” suggests many ways to create new features.
Example: Monomial Interaction Terms

- Suppose we start with \(x = (1, x_1, \ldots, x_d) \in \mathbb{R}^{d+1} = X \).
- To get a more expressive hypothesis space, we want to add interaction terms.
- Consider adding all monomials of degree \(M \): \(x_1^{p_1} \cdots x_d^{p_d} \), with \(p_1 + \cdots + p_d = M \).
- How many features will we end up with?
 - \(\binom{M+d}{M} \) ("flower shop problem" from combinatorics)
 - For \(d = 40 \) and \(M = 8 \), we get 377348994 features.
- That will make some extremely large data matrices...
Very large feature spaces have two potential issues:

1. Overfitting
2. Memory and computational costs

- Overfitting we handle with regularization.
- “Kernel methods” can (sometimes) help with memory and computational costs.
Let $\psi : \mathcal{X} \to \mathbb{R}^d$ be a feature map.

The SVM optimization problem (with explicit feature map):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + \frac{c}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T \psi(x_i)).$$

Last time we mentioned an equivalent optimization problem from Lagrangian duality...
By Lagrangian duality, it is equivalent to solve the following optimization problem:

\[
\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \psi(x_j)^T \psi(x_i)
\]

s.t. \[\sum_{i=1}^{n} \alpha_i y_i = 0 \quad \text{and} \quad \alpha_i \in \left[0, \frac{c}{n}\right] \quad i = 1, \ldots, n.\]

If \(\alpha^*\) is an optimal value, then

\[
\hat{w}^* = \sum_{i=1}^{n} \alpha_i^* y_i \psi(x_i) \quad \text{and} \quad \hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i \psi(x_i)^T \psi(x).
\]

Notice: \(\psi(x)\) only shows up in an inner products with another \(\psi(x')\).
Some Methods Can Be “Kernelized”

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

- The SVM Dual is a kernelization of the original SVM formulation.
- We’ll now introduce some special notation for these inner products $\langle \psi(x), \psi(x') \rangle$...
The Kernel Function

- **Input space**: \mathcal{X}
- **Feature space**: \mathcal{H} (a Hilbert space, i.e. an inner product space with projections, e.g. \mathbb{R}^d)
- **Feature map**: $\psi : \mathcal{X} \rightarrow \mathcal{H}$
- The **kernel function** corresponding to ψ is

$$k(x, x') = \langle \psi(x), \psi(x') \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the inner product associated with \mathcal{H}.
Feature map: $\psi : \mathcal{X} \rightarrow \mathcal{H}$

The **kernel function** corresponding to ψ is

$$k(x, x') = \langle \psi(x), \psi(x') \rangle.$$

- Why introduce this new notation $k(x, x')$?
- We can often evaluate $k(x, x')$ without explicitly computing $\psi(x)$ and $\psi(x')$.
- For large feature spaces, can be much faster.
Kernel Evaluation Can Be Fast

Example

Quadratic feature map for $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$.

$$\psi(x) = (x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_ix_j, \ldots \sqrt{2}x_{d-1}x_d)^T$$

has dimension $O(d^2)$, but for any $x, x' \in \mathbb{R}^d$

$$k(x, x') = \langle \psi(x), \psi(x') \rangle = \langle x, x' \rangle + \langle x, x' \rangle^2$$

- Explicit computation of $k(x, x')$: $O(d^2)$
- Implicit computation of $k(x, x')$: $O(d)$
Kernels as Similarity Scores

- Often useful to think of the kernel function as a *similarity score*.
- But this is not a mathematically precise statement.
- There are many ways to design a similarity score.
- We will use kernel functions that correspond to inner products in some feature space.
- These are called *Mercer kernels*.
What are the Benefits of Kernelization?

1. Computational (when optimizing over \mathbb{R}^n is better than over \mathbb{R}^d).
2. Can sometimes avoid any $O(d)$ operations
 - allows access to infinite-dimensional feature spaces.
3. Allows thinking in terms of “similarity” rather than features.
The Kernel Matrix

Definition

The **kernel matrix** for a kernel k on $x_1, \ldots, x_n \in \mathcal{X}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

- In ML this is also called a **Gram matrix**, but traditionally (in linear algebra),
 - Gram matrices are defined without reference to a kernel or feature map.
The Kernel Matrix

- The kernel matrix summarizes all the information we need about the training inputs x_1, \ldots, x_n to solve a kernelized optimization problem.

- e.g. in the kernelized SVM, we can replace $\psi(x_i)^T \psi(x_j)$ with K_{ij}:

$$
\sup_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j K_{ij}
$$

s.t. $\sum_{i=1}^{n} \alpha_i y_i = 0$ and $\alpha_i \in \left[0, \frac{c}{n} \right]$ $i = 1, \ldots, n.$
The “Kernel Trick”

1. Given a kernelized ML algorithm (i.e. all $\psi(x)$’s show up as $\langle \psi(x), \psi(x') \rangle$).
2. Can swap out the inner product for a new kernel function.
3. New kernel may correspond to a very high-dimensional feature space.
4. Once the kernel matrix is computed, the computational cost depends on number of data points, rather than the dimension of feature space.

The trick is that once you’ve implemented your method in terms of a kernel matrix, you can go from a kernel corresponding to a very small feature vector to a kernel corresponding to a very large (even infinite dimensional) feature vector, without changing your code, just by swapping one kernel matrix for another. Runtime is unaffected, after the kernel matrix is computed.
Our Plan

- Present our principal tool for kernelization: the **representer theorem**
- To keep things clean, we’ll drop the explicit feature map until we need it: $\psi(x) = x$.
- Discuss specific cases of kernel ridge regression and kernel SVM
- Discuss several kernels, including the famous RBF kernel.
- Discuss how to create a kernel without an explicit feature map.
The Representer Theorem to Kernelize
The Representer Theorem

Theorem (Representer Theorem)

Let

\[J(w) = R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle), \]

where

- \(w, x_1, \ldots, x_n \in \mathcal{H} \) for some Hilbert space \(\mathcal{H} \). (We typically have \(\mathcal{H} = \mathbb{R}^d \).)
- \(\| \cdot \| \) is the norm corresponding to the inner product of \(\mathcal{H} \). (i.e. \(\|w\| = \sqrt{\langle w, w \rangle} \))
- \(R : [0, \infty) \to \mathbb{R} \) is nondecreasing (Regularization term, and
- \(L : \mathbb{R}^n \to \mathbb{R} \) is arbitrary (Loss term).

If \(J(w) \) has a minimizer, then it has a minimizer of the form \(w^* = \sum_{i=1}^{n} \alpha_i x_i \).

[If \(R \) is strictly increasing, then all minimizers have this form. (Proof in homework.)]
Rewriting the Objective Function

- Define the training score function \(s : \mathbb{R}^d \rightarrow \mathbb{R}^n \) by

\[
\mathbf{s}(w) = \begin{pmatrix}
\langle w, x_1 \rangle \\
\vdots \\
\langle w, x_n \rangle
\end{pmatrix},
\]

which gives the **training score vector** for any \(w \).

- We can then rewrite the objective function as

\[
J(w) = R(\|w\|) + L(s(w)),
\]

where now \(L : \mathbb{R}^{n \times 1} \rightarrow \mathbb{R} \) takes a column vector as input.

- This will allow us to have a slick reparametrized version...
Reparametrize the Generalized Objective

- By the Representer Theorem, it’s sufficient to minimize $J(w)$ for w of the form $\sum_{i=1}^{n} \alpha_i x_i$.
- Plugging this form into $J(w)$, we see we can just minimize

$$J_0(\alpha) = R \left(\left\| \sum_{i=1}^{n} \alpha_i x_i \right\| \right) + L \left(s \left(\sum_{i=1}^{n} \alpha_i x_i \right) \right)$$

over $\alpha = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{R}^{n \times 1}$.

- With some new notation, we can substantially simplify
 - the norm piece $\|w\| = \|\sum_{i=1}^{n} \alpha_i x_i\|$, and
 - the score piece $s(w) = s \left(\sum_{i=1}^{n} \alpha_i x_i \right)$.
Simplifying the Reparametrized Norm

For the norm piece \(\|w\| = \| \sum_{i=1}^{n} \alpha_i x_i \| \), we have

\[
\|w\|^2 = \langle w, w \rangle = \left\langle \sum_{i=1}^{n} \alpha_i x_i, \sum_{j=1}^{n} \alpha_j x_j \right\rangle = \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle.
\]

- This expression involves the \(n^2 \) inner products between all pairs of input vectors.
- We often put those values together into a matrix...
The Gram Matrix

Definition

The **Gram matrix** of a set of points \(x_1, \ldots, x_n \) in an inner product space is defined as

\[
K = \begin{pmatrix}
\langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\
\vdots & \ddots & \vdots \\
\langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle
\end{pmatrix}
\]

- This is the traditional definition from linear algebra.
- The Gram matrix is a special case of a **kernel matrix** for the identity feature map.
- That’s why we write \(K \) for the Gram matrix instead of \(G \), as done in elsewhere.
- **NOTE**: In ML, we often use Gram matrix and kernel matrix to mean the same thing. Don’t get too hung up on the definitions.
Example: Gram Matrix for the Dot Product

- Consider \(x_1, \ldots, x_n \in \mathbb{R}^{d \times 1} \) with the standard inner product \(\langle x, x' \rangle = x^T x' \).
- Let \(X \in \mathbb{R}^{n \times d} \) be the \textbf{design matrix}, which has each input vector as a row:

\[
X = \begin{pmatrix}
-x_1^T \\
\vdots \\
-x_n^T
\end{pmatrix}.
\]

- Then the Gram matrix is

\[
K = \begin{pmatrix}
x_1^T x_1 & \cdots & x_1^T x_n \\
\vdots & \ddots & \vdots \\
x_n^T x_1 & \cdots & x_n^T x_n
\end{pmatrix} = \begin{pmatrix}
-x_1^T \\
\vdots \\
-x_n^T
\end{pmatrix} \begin{pmatrix}
| & \cdots & | \\
x_1 & \cdots & x_n
\end{pmatrix}
\]

\[= XX^T\]
Simplifying the Reparametrized Norm

With $w = \sum_{i=1}^{n} \alpha_i x_i$, we have

$$\|w\|^2 = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_i x_i, \sum_{j=1}^{n} \alpha_j x_j \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

$$= \alpha^T K \alpha.$$
Simplifying the Training Score Vector

- The score for x_j for $w = \sum_{i=1}^{n} \alpha_i x_i$ is

 \[
 \langle w, x_j \rangle = \left\langle \sum_{i=1}^{n} \alpha_i x_i, x_j \right\rangle = \sum_{i=1}^{n} \alpha_i \langle x_i, x_j \rangle
 \]

- The training score vector is

 \[
 s \left(\sum_{i=1}^{n} \alpha_i x_i \right) = \left(\sum_{i=1}^{n} \alpha_i \langle x_i, x_1 \rangle, \ldots, \sum_{i=1}^{n} \alpha_i \langle x_i, x_n \rangle \right) = \left(\alpha_1 \langle x_1, x_1 \rangle + \cdots + \alpha_n \langle x_n, x_1 \rangle, \ldots, \alpha_1 \langle x_1, x_n \rangle + \cdots + \alpha_n \langle x_n, x_n \rangle \right)
 \]

 \[
 = \begin{pmatrix}
 \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\
 \vdots & \ddots & \vdots \\
 \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle
 \end{pmatrix}
 \begin{pmatrix}
 \alpha_1 \\
 \vdots \\
 \alpha_n
 \end{pmatrix}
 \]

 \[
 = K \alpha
 \]
Putting it all together, our reparametrized objective function can be written as

\[
J_0(\alpha) = R \left(\left\| \sum_{i=1}^{n} \alpha_i x_i \right\| \right) + L \left(s \left(\sum_{i=1}^{n} \alpha_i x_i \right) \right) = R \left(\sqrt{\alpha^T K \alpha} \right) + L (K \alpha),
\]

which we minimize over \(\alpha \in \mathbb{R}^n \).

- All information needed about \(x_1, \ldots, x_n \) is summarized in the Gram matrix \(K \).
- We’re now minimizing over \(\mathbb{R}^n \) rather than \(\mathbb{R}^d \).
- If \(d \gg n \), this can be a big win computationally (at least once \(K \) is computed).
Reparametrizing Predictions

- Suppose we’ve found
 \[\alpha^* \in \arg\min_{\alpha \in \mathbb{R}^n} R \left(\sqrt{\alpha^T K \alpha} \right) + L(K\alpha). \]

- Then we know \(w^* = \sum_{i=1}^{n} \alpha^*_i x_i \) satisfies
 \[w^* \in \arg\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle). \]

- The prediction on a new point \(x \in \mathcal{H} \) is
 \[\hat{f}(x) = \langle w^*, x \rangle = \sum_{i=1}^{n} \alpha^*_i \langle x_i, x \rangle. \]

- To make a new prediction, we may need to touch all the training inputs \(x_1, \ldots, x_n \).
More Notation

- It will be convenient to define the following column vector for any $x \in \mathcal{H}$:

$$k_x = \begin{pmatrix} \langle x_1, x \rangle \\ \vdots \\ \langle x_n, x \rangle \end{pmatrix}$$

- Then we can write our predictions on a new point x as

$$\hat{f}(x) = k_x^T \alpha^*$$
Summary So Far

- Original plan:
 - Find \(w^* \in \arg\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle) \)
 - Predict with \(\hat{f}(x) = \langle w^*, x \rangle \).

- We showed that the following is equivalent:
 - Find \(\alpha^* \in \arg\min_{\alpha \in \mathbb{R}^n} R(\sqrt{\alpha^T K \alpha}) + L(K \alpha) \)
 - Predict with \(\hat{f}(x) = k^T x \alpha^* \), where

\[
K = \begin{pmatrix}
\langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\
\vdots & \ddots & \vdots \\
\langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle
\end{pmatrix}
\quad \text{and} \quad
k_x = \begin{pmatrix}
\langle x_1, x \rangle \\
\vdots \\
\langle x_n, x \rangle
\end{pmatrix}
\]

- Every element \(x \in \mathcal{H} \) occurs inside an inner products with a training input \(x_i \in \mathcal{H} \).
Kernelization

Definition

A method is **kernelized** if every feature vector \(\psi(x) \) only appears inside an inner product with another feature vector \(\psi(x') \). This applies to both the optimization problem and the prediction function.

- Here we are using \(\psi(x) = x \). Thus finding

\[
\alpha^* \in \arg\min_{\alpha \in \mathbb{R}^n} R \left(\sqrt{\alpha^T K \alpha} \right) + L (K \alpha)
\]

and making predictions with \(\hat{f}(x) = k_x^T \alpha^* \) is a **kernelization** of finding

\[
w^* \in \arg\min_{w \in \mathcal{H}} R (\|w\|) + L (\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle)
\]

and making predictions with \(\hat{f}(x) = \langle w^*, x \rangle \).
Once we have kernelized:
- \(\alpha^* \in \arg\min_{\alpha \in \mathbb{R}^n} R \left(\sqrt{\alpha^T K \alpha} \right) + L (K \alpha) \)
- \(\hat{f}(x) = k_x^T \alpha^* \)

We can do the “kernel trick”.

Replace each \(\langle x, x' \rangle \) by \(k(x, x') \), for any kernel function \(k \), where \(k(x, x') = \langle \psi(x), \psi(x') \rangle \).

Predictions

\[
\hat{f}(x) = \sum_{i=1}^{n} \alpha^*_i k(x_i, x)
\]
Kernel Ridge Regression
Kernelizing Ridge Regression

- Ridge Regression:
 \[
 \min_{w \in \mathbb{R}^d} \frac{1}{n} \|Xw - y\|^2 + \lambda \|w\|^2
 \]

- Plugging in \(w = \sum_{i=1}^{n} \alpha_i x_i \), we get the kernelized ridge regression objective function:
 \[
 \min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \|K\alpha - y\|^2 + \lambda \alpha^T K \alpha
 \]

- This is usually just called kernel ridge regression.
For $\lambda > 0$, the ridge regression solution is

$$w^* = (X^TX + \lambda I)^{-1}X^Ty$$

and the kernel ridge regression solution is

$$\alpha^* = (XX^T + \lambda I)^{-1}y = (K + \lambda I)^{-1}y$$

(Shown in homework.)

For ridge regression we’re dealing with a $d \times d$ matrix.

For kernel ridge regression we’re dealing an $n \times n$ matrix.
Predictions

- Predictions in terms of w^*:
 \[\hat{f}(x) = x^T w^* \]

- Predictions in terms of α^*:
 \[\hat{f}(x) = k_x^T \alpha^* = \sum_{i=1}^{n} \alpha_i^* x_i^T x \]

- For kernel ridge regression, need to access all training inputs x_1, \ldots, x_n to predict.
- For SVM, we may not...
Kernel SVM
Kernelized SVM (From Representer Theorem)

- The SVM objective:
 \[
 \min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + \frac{c}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i).
 \]

- Plugging in \(w = \sum_{i=1}^{n} \alpha_i x_i \), we get
 \[
 \min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^T K \alpha + \frac{c}{n} \sum_{i=1}^{n} \max(0, 1 - y_i (K \alpha)_i)\]

- Predictions with
 \[
 \hat{f}(x) = x^T w^* = \sum_{i=1}^{n} \alpha_i^* x_i^T x.
 \]

- This is one way to kernelize SVM...
Kernelized SVM (From Lagrangian Duality)

Kernelized SVM from computing the Lagrangian Dual Problem:

\[
\begin{align*}
\max_{\alpha \in \mathbb{R}^n} & \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j \\
\text{s.t.} & \quad \sum_{i=1}^{n} \alpha_i y_i = 0 \\
& \quad \alpha_i \in \left[0, \frac{c}{n}\right] \quad i = 1, \ldots, n.
\end{align*}
\]

If \(\alpha^*\) is an optimal value, then

\[
\begin{align*}
w^* &= \sum_{i=1}^{n} \alpha_i^* y_i x_i \quad \text{and} \quad \hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i x_i^T x.
\end{align*}
\]

Note that the prediction function is also kernelized.
Sparsity in the Data from Complementary Slackness

- Kernelized predictions given by

\[\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i x_i^T x. \]

- By a Lagrangian duality analysis (specifically from complementary slackness), we find

\[y_i \hat{f}(x_i) < 1 \implies \alpha_i^* = \frac{c}{n} \]
\[y_i \hat{f}(x_i) = 1 \implies \alpha_i^* \in \left[0, \frac{c}{n} \right] \]
\[y_i \hat{f}(x_i) > 1 \implies \alpha_i^* = 0 \]

- So we can leave out any \(x_i \) “on the good side of the margin” (\(y_i \hat{f}(x_i) > 1 \)).

- \(x_i \)'s that we must keep, because \(\alpha_i^* \neq 0 \), are called support vectors.
Kernels
Linear Kernel

- Input space: $\mathcal{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^d$, with standard inner product
- Feature map
 $$\psi(x) = x$$
- Kernel:
 $$k(x, x') = x^T x'$$
Quadratic Kernel in \mathbb{R}^d

- Input space $\mathcal{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^D$, where $D = d + \binom{d}{2} \approx d^2 / 2$.
- Feature map:
 \[
 \psi(x) = (x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_ix_j, \ldots, \sqrt{2}x_{d-1}x_d)^T
 \]
- Then for $\forall x, x' \in \mathbb{R}^d$
 \[
 k(x, x') = \langle \psi(x), \psi(x') \rangle = \langle x, x' \rangle + \langle x, x' \rangle^2
 \]
- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: $O(d)$.

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.
Polynomial Kernel in \mathbb{R}^d

- Input space $\mathcal{X} = \mathbb{R}^d$
- Kernel function:
 \[k(x, x') = (1 + \langle x, x' \rangle)^M \]
- Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- Cost of explicit inner product computation grows rapidly in M.
The RBF Kernel
Radial Basis Function (RBF) / Gaussian Kernel

- Input space $\mathcal{X} = \mathbb{R}^d$

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right),$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why “radial”?
- Have we departed from our “inner product of feature vector” recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.
RBF Basis

- Input space $\mathcal{X} = \mathbb{R}$
- Output space: $\mathcal{Y} = \mathbb{R}$
- RBF kernel $k(w, x) = \exp\left(- (w - x)^2 \right)$.
- Suppose we have 6 training examples: $x_i \in \{-6, -4, -3, 0, 2, 4\}$.
- If representer theorem applies, then

$$f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x).$$

- f is a linear combination of 6 basis functions of form $k(x_i, \cdot)$:
RBF Predictions

- Basis functions

\[f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x) \]

- Predictions of the form \(f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x) \):

- When kernelizing with RBF kernel, prediction functions always look this way.

- (Whether we get \(w \) from SVM, ridge regression, etc...)
To work with infinite dimensional feature vectors, we need a space with certain properties.
- an inner product
- a norm related to the inner product
- projection theorem: \(x = x_\perp + x_\parallel \) where \(x_\parallel \in S = \text{span}(w_1, \ldots, w_n) \) and \(\langle x_\perp, s \rangle = 0 \quad \forall s \in S \).
- Basically, we need a Hilbert space.

Definition

\(\ell_2 \) is the space of all real-valued sequences: \((x_0, x_1, x_2, x_3, \ldots) \) with \(\sum_{i=0}^{\infty} x_i^2 < \infty \).

Theorem

With the inner product \(\langle x, x' \rangle = \sum_{i=0}^{\infty} x_i x'_i \), \(\ell_2 \) *is a Hilbert space*.
Consider RBF kernel (1-dim):
\[k(x, x') = \exp\left(-\frac{(x - x')^2}{2}\right) \]

We claim that \(\psi : \mathbb{R} \rightarrow \ell_2 \), defined by
\[
[\psi(x)]_j = \frac{1}{\sqrt{j!}} e^{-x^2/2} x^j
\]
gives the “infinite-dimensional feature vector” corresponding to RBF kernel.

Is this mapping even well-defined? Is \(\psi(x) \) even an element of \(\ell_2 \)?

Yes:
\[
\sum_{j=0}^{\infty} \frac{1}{j!} e^{-x^2} x^{2j} = e^{-x^2} \sum_{j=0}^{\infty} \frac{(x^2)^j}{j!} = 1 < \infty.
\]
The Infinite Dimensional Feature Vector for RBF

Does feature vector \([\psi(x)]_n = \frac{1}{\sqrt{j!}} e^{-x^2/2} x^j\) actually correspond to the RBF kernel?

Yes! Proof:

\[
\langle \psi(x), \psi(x') \rangle = \sum_{j=0}^{\infty} \frac{1}{j!} e^{-(x^2+(x')^2)/2} x^j (x')^j
\]

\[
= \frac{1}{\sqrt{j!}} e^{-(x^2+(x')^2)/2} \sum_{j=0}^{\infty} \frac{(xx')^j}{j!}
\]

\[
= \exp \left(- \left[x^2 + (x')^2 \right]/2 \right) \exp (xx')
\]

\[
= \exp \left(- \left[(x-x')^2/2 \right] \right)
\]

QED
When is $k(x, x')$ a kernel function? (Mercer’s Theorem)
How to Get Kernels?

1. Explicitly construct $\psi(x) : \mathcal{X} \rightarrow \mathbb{R}^d$ and define $k(x, x') = \psi(x)^T \psi(x')$.

2. Directly define the kernel function $k(x, x')$, and verify it corresponds to $\langle \psi(x), \psi(x') \rangle$ for some ψ.

There are many theorems to help us with the second approach.
Positive Semidefinite Matrices

Definition
A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite (psd) if for any $x \in \mathbb{R}^n$,

$$x^T M x \geq 0.$$

Theorem
The following conditions are each necessary and sufficient for a symmetric matrix M to be positive semidefinite:

- M has can be factorized as $M = R^T R$, for some matrix R.
- All eigenvalues of M are greater than or equal to 0.
Positive Semidefinite Function

Definition

A symmetric kernel function \(k : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) is positive semidefinite (psd) if for any finite set \(\{x_1, \ldots, x_n\} \in \mathcal{X} \), the kernel matrix on this set

\[
K = (k(x_i, x_j))_{i,j} = \begin{pmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
\end{pmatrix}
\]

is a positive semidefinite matrix.
Mercer’s Theorem

Theorem

A symmetric function $k(x, x')$ can be expressed as an inner product

$$k(x, x') = \langle \psi(x), \psi(x') \rangle$$

for some ψ if and only if $k(x, x')$ is **positive semidefinite**.
Suppose \(k, k_1, k_2 : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) are psd kernels. Then so are the following:

\[
\begin{align*}
 k_{\text{new}}(x, x') &= k_1(x, x') + k_2(x, x') \\
 k_{\text{new}}(x, x') &= \alpha k(x, x') \\
 k_{\text{new}}(x, x') &= f(x)f(x') \text{ for any function } f(\cdot) \\
 k_{\text{new}}(x, x') &= k_1(x, x')k_2(x, x')
\end{align*}
\]

See Appendix for details.

Lots more theorems to help you construct new kernels from old...
Details on New Kernels from Old [Optional]
Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2, respectively. Then

$$k_1(x, x') + k_2(x, x')$$

is a psd kernel.

Proof: Concatenate the feature vectors to get

$$\phi(x) = (\phi_1(x), \phi_2(x)).$$

Then ϕ is a feature map for $k_1 + k_2$.
Closure under Positive Scaling

- Suppose k is a psd kernel with feature maps ϕ.
- Then for any $\alpha > 0$,

 αk

 is a psd kernel.
- Proof: Note that

 $\phi(x) = \sqrt{\alpha} \phi(x)$

 is a feature map for αk.

For any function $f(x)$,

$$k(x, x') = f(x)f(x')$$

is a kernel.

Proof: Let $f(x)$ be the feature mapping. (It maps into a 1-dimensional feature space.)

$$\langle f(x), f(x') \rangle = f(x)f(x') = k(x, x').$$
Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2, respectively.

Then

$$k_1(x, x')k_2(x, x')$$

is a psd kernel.

Proof: Take the outer product of the feature vectors:

$$\phi(x) = \phi_1(x)[\phi_2(x)]^T.$$

Note that $\phi(x)$ is a matrix.

Continued...
Closure under Hadamard Products

Then

$$\langle \phi(x), \phi(x') \rangle = \sum_{i,j} \phi(x) \phi(x')$$

$$= \sum_{i,j} \left[\phi_1(x) [\phi_2(x)]^T \right]_{ij} \left[\phi_1(x') [\phi_2(x')]^T \right]_{ij}$$

$$= \sum_{i,j} \left[\phi_1(x) \right]_i \left[\phi_2(x) \right]_j \left[\phi_1(x') \right]_i \left[\phi_2(x') \right]_j$$

$$= \left(\sum_i \left[\phi_1(x) \right]_i \left[\phi_1(x') \right]_i \right) \left(\sum_j \left[\phi_2(x) \right]_j \left[\phi_2(x') \right]_j \right)$$

$$= k_1(x, x') k_2(x, x')$$