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Solutions in the “span of the data,” and so what?

David S. Rosenberg (New York University) DS-GA 1003 February 26, 2019 3 / 55



SVM solution is in the “span of the data”

We found the SVM dual problem can be written as:

sup
α∈Rn

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Given solution α∗ to dual, primal solution is w∗=
∑n

i=1α
∗
i yixi .

Notice: w∗ is a linear combination of training inputs x1, . . . ,xn.
We refer to this phenomenon by saying “w∗ is in the span of the data.”

Or in math, w∗ ∈ span(x1, . . . ,xn).
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Ridge regression solution is in the “span of the data”

The ridge regression solution for regularization parameter λ > 0 is

w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22.

This has a closed form solution (Homework #4):

w∗ =
(
XTX +λI

)−1
XT y ,

where X is the design matrix, with x1, . . . ,xn as rows.
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Ridge regression solution is in the “span of the data”

Rearranging w∗ =
(
XTX +λI

)−1
XT y , we can show that (also Homework #4):

w∗ = XT

(
1
λ
y −

1
λ
Xw∗

)
︸ ︷︷ ︸

α∗

= XTα∗ =

n∑
i=1

α∗i xi .

So w∗ is in the span of the data.
i.e. w∗ ∈ span(x1, . . . ,xn)
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If solution is in the span of the data, we can reparameterize

The ridge regression solution for regularization parameter λ > 0 is

w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22.

We now know that w∗ ∈ span(x1, . . . ,xn)⊂ Rd .

So rather than minimizing over all of Rd , we can minimize over span(x1, . . . ,xn).

w∗ = argmin
w∈span(x1,...,xn)

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22.

How can we conveniently write an optimization problem over the span of some vectors?
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If solution is in the span of the data, we can reparameterize

Note that for any w ∈ span(x1, . . . ,xn), we have w = XTα, for some α ∈ Rn.

So let’s replace w with XTα in our optimization problem:

[original] w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22

[reparameterized] α∗ = argmin
α∈Rn

1
n

n∑
i=1

{(
XTα

)T
xi − yi

}2
+λ‖XTα‖22.

To get w∗ from the reparameterized optimization problem, we just take w∗ = XTα∗.

We changed the dimension of our optimization variable from d to n. Is this useful?
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Consider very large feature spaces

Suppose we have a 300-million dimension feature space [very large]
(e.g. using high order monomial interaction terms as features, as described last lecture)

Suppose we have a training set of 300,000 examples [fairly large]

In the original formulation, we solve a 300-million dimension optimization problem.
In the reparameterized formulation, we solve a 300,000-dimension optimization problem.

This is why we care about when the solution is in the span of the data.
This reparameterization is interesting when we have more features than data (d � n).
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What’s next?

For SVM and ridge regression, we found that the solution is in the span of the data.

derived in two rather ad-hoc ways

Up next: The Representer Theorem, which shows that this “span of the data” result occurs
far more generally, and we prove it using basic linear algebra.
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Math Review: Inner Product Spaces and Projections (Hilbert Spaces)

David S. Rosenberg (New York University) DS-GA 1003 February 26, 2019 11 / 55



Inner Product Space (or “Pre-Hilbert” Spaces)

An inner product space (over reals) is a vector space V and an inner product, which is a
mapping

〈·, ·〉 : V×V→ R

that has the following properties ∀x ,y ,z ∈ V and a,b ∈ R:
Symmetry: 〈x ,y〉= 〈y ,x〉

Linearity: 〈ax +by ,z〉= a 〈x ,z〉+b 〈y ,z〉

Positive-definiteness: 〈x ,x〉> 0 and 〈x ,x〉= 0 ⇐⇒ x = 0.
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Norm from Inner Product

For an inner product space, we define a norm as

‖x‖=
√
〈x ,x〉.

Example

Rd with standard Euclidean inner product is an inner product space:

〈x ,y〉 := xT y ∀x ,y ∈ Rd .

Norm is
‖x‖=

√
xT x .
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What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm ‖ · ‖ can be written in terms of an inner product on V iff ∀x ,x ′ ∈ V

2‖x‖2+2‖x ′‖2 = ‖x + x ′‖2+‖x − x ′‖2,

and if it can, the inner product is given by the polarization identity

〈
x ,x ′

〉
=

||x ||2+ ||x ′||2− ||x − x ′||2

2
.

Example

`1 norm on Rd is NOT generated by an inner product. [Exercise]

Is `2 norm on Rd generated by an inner product?
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Orthogonality (Definitions)

Definition
Two vectors are orthogonal if 〈x ,x ′〉= 0. We denote this by x ⊥ x ′.

Definition
x is orthogonal to a set S , i.e. x ⊥ S , if x ⊥ s for all x ∈ S .
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Pythagorean Theorem

Theorem (Pythagorean Theorem)

If x ⊥ x ′, then ‖x + x ′‖2 = ‖x‖2+‖x ′‖2.

Proof.
We have

‖x + x ′‖2 =
〈
x + x ′,x + x ′

〉
= 〈x ,x〉+

〈
x ,x ′

〉
+
〈
x ′,x

〉
+
〈
x ′,x ′

〉
= ‖x‖2+‖x ′‖2.

David S. Rosenberg (New York University) DS-GA 1003 February 26, 2019 16 / 55



Projection onto a Plane (Rough Definition)

Choose some x ∈ V.
Let M be a subspace of inner product space V.
Then m0 is the projection of x onto M,

if m0 ∈M and is the closest point to x in M.

In math: For all m ∈M,
‖x −m0‖6 ‖x −m‖.

David S. Rosenberg (New York University) DS-GA 1003 February 26, 2019 17 / 55



Hilbert Space

Projections exist for all finite-dimensional inner product spaces.
We want to allow infinite-dimensional spaces.
Need an extra condition called completeness.
A space is complete if all Cauchy sequences in the space converge.

Definition
A Hilbert space is a complete inner product space.

Example
Any finite dimensional inner product space is a Hilbert space.
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The Projection Theorem

Theorem (Classical Projection Theorem)

H a Hilbert space
M a closed subspace of H (picture a hyperplane through the origin)
For any x ∈H, there exists a unique m0 ∈M for which

‖x −m0‖6 ‖x −m‖ ∀m ∈M.

This m0 is called the [orthogonal] projection of x onto M.
Furthermore, m0 ∈M is the projection of x onto M iff

x −m0 ⊥M.
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Projection Reduces Norm

Theorem
Let M be a closed subspace of H. For any x ∈H, let m0 = ProjMx be the projection of x onto
M. Then

‖m0‖6 ‖x‖,

with equality only when m0 = x .

Proof.

‖x‖2 = ‖m0+(x −m0)‖2 (note: x −m0 ⊥m0 by Projection theorem)

= ‖m0‖2+‖x −m0‖2 by Pythagorean theorem
‖m0‖2 = ‖x‖2−‖x −m0‖2

Then ‖x −m0‖2 > 0 implies ‖m0‖2 6 ‖x‖2. If ‖x −m0‖2 = 0, then x =m0, by definition of
norm.
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The Representer Theorem
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Generalize from SVM Objective

SVM objective:

min
w∈Rd

1
2
‖w‖2+ c

n

n∑
i=1

max(0,1− yi [〈w ,xi 〉]) .

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

where
R : [0,∞)→ R is nondecreasing (Regularization term)
and L : Rn→ R is arbitrary. (Loss term)
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

where
w ,x1, . . . ,xn ∈H for some Hilbert space H. (We typically have H = Rd .)
‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=

√
〈w ,w〉)

R : [0,∞)→ R is nondecreasing (Regularization term), and
L : Rn→ R is arbitrary (Loss term).
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

What’s “linear”?
The prediction/score function x 7→ 〈w ,x〉 is linear – in what?

in parameter vector w , and
in the feature vector x .

Why? [Real-valued] inner products are linear in each argument.
The important part is the linearity in the parameter w .
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

Ridge regression and SVM are of this form. (Verify this!)

What if we penalize with λ‖w‖2 instead of λ‖w‖22? Yes!.
What if we use lasso regression? No! `1 norm does not correspond to an inner product.
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The Representer Theorem: Quick Summary

Generalized objective:

w∗ = argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

Representer theorem tells us we can look for w∗ in the span of the data:

w∗ = argmin
w∈span(x1,...,xn)

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) .

So we can reparameterize as before:

α∗ = argmin
α∈Rn

R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(〈
n∑

i=1

αixi ,x1

〉
, . . . ,

〈
n∑

i=1

αixi ,xn

〉)
.

Our reparameterization trick applies much more broadly than SVM and ridge.
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The Representer Theorem

Theorem (Representer Theorem)

Let
J(w) = R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

where
w ,x1, . . . ,xn ∈H for some Hilbert space H. (We typically have H = Rd .)

‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=
√
〈w ,w〉)

R : [0,∞)→ R is nondecreasing (Regularization term), and
L : Rn→ R is arbitrary (Loss term).

Then

If M = span(x1, . . . ,xn), then J(ProjMw)6 J(w) for any w ∈H.
If J(w) has a minimizer, then it has a minimizer of the form w∗ =

∑n
i=1αixi .

If R is strictly increasing, then all minimizers have this form. (Proof in homework.)
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The Representer Theorem (Proof)

1 Fix any w ∈H.
2 Let wM = ProjMw .
3 Residual w −wM is orthogonal to x for all x ∈M.
4 〈w ,xi 〉= 〈wM +w −wM ,xi 〉= 〈wM ,xi 〉+ 〈w −wM ,xi 〉= 〈wM ,xi 〉 ∀i .
5 L(〈w ,x1〉 , . . . ,〈w ,xn〉) = L(〈wM ,x1〉 , . . . ,〈wM ,xn〉).
6 Projections decrease norms =⇒ ‖wM‖6 ‖w‖.
7 Since R is nondecreasing, R(‖wM‖)6 R(‖w‖).
8 J(wM)6 J(w). [Proves first result.]
9 If w∗ minimizes J(w), then w∗M = ProjMw∗ is also a minimizer, since J(w∗M)6 J(w∗).
10 So ∃α s.t. w∗M =

∑n
i=1αixi is a minimizer of J(w).

Q.E.D.
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Sufficient Condition for Existence of a Minimizer

Theorem
aLet

J(w) = R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

and let M = span(x1, . . . ,xn). Then under the same conditions given in the Representer
theorem, if w∗M minimizes J(w) over the set M, then w∗M minimizes J(w) over all H.

aThanks to Mingsi Long for suggesting this nice theorem and proof.

One consequence of the Representer theorem only applies if J(w) has a minimizer over H.
This theorem tells us that it’s sufficient to check for a constrained minimizer of J(w) over
M. If one exists, then it’s also an unconstrained minimizer of J(w) over H. If there is no
constrained minimizer over M, then J(w) has no minimizer over H (by the Representer
theorem).

Bottom Line: We can jump straight to minimizing over M, the “span of the data”.
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Sufficient Condition for Existence of a Minimizer (Proof)

1 Let w∗M ∈ argminw∈M J(w). [the constrained minimizer]
2 Consider any w ∈H.
3 Let wM = ProjMw .
4 By the Representer theorem, J(wM)6 J(w).
5 J(w∗M)6 J(wM) by definition of w∗M .
6 Thus for any w ∈H, J(w∗M)6 J(w).
7 Therefore w∗M minimizes J(w) over H

QED
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Reparameterizing our Generalized Objective Function
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Rewriting the Objective Function

Define the training score function s : Rd → Rn by

s(w) =

〈w ,x1〉
...

〈w ,xn〉

 ,

which gives the training score vector for any w .

We can then rewrite the objective function as

J(w) = R (‖w‖)+L(s(w)) ,

where now L : Rn×1→ R takes a column vector as input.

This will allow us to have a slick reparameterized version...
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Reparameterize the Generalized Objective

By the Representer Theorem, it’s sufficient to minimize J(w) for w of the form
∑n

i=1αixi .
Plugging this form into J(w), we see we can just minimize

J0(α) = R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(
s

(
n∑

i=1

αixi

))

over α= (α1, . . . ,αn)
T ∈ Rn×1.

With some new notation, we can substantially simplify
the norm piece ‖w‖= ‖

∑n
i=1αixi‖, and

the score piece s(w) = s (
∑n

i=1αixi ).
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Simplifying the Reparameterized Norm

For the norm piece ‖w‖= ‖
∑n

i=1αixi‖, we have

‖w‖2 = 〈w ,w〉

=

〈
n∑

i=1

αixi ,
n∑

j=1

αjxj

〉

=

n∑
i ,j=1

αiαj 〈xi ,xj〉 .

This expression involves the n2 inner products between all pairs of input vectors.
We often put those values together into a matrix...
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The Gram Matrix

Definition
The Gram matrix of a set of points x1, . . . ,xn in an inner product space is defined as

K =
(
〈xi ,xj〉

)
i ,j

=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 .

This is the traditional definition from linear algebra.
Later today we’ll introduce the notion of a “kernel matrix”

The Gram matrix is a special case of a kernel matrix for the identity feature map.
That’s why we write K for the Gram matrix instead of G , as done elsewhere.

NOTE: In ML, we often use Gram matrix and kernel matrix to mean the same thing.
Don’t get too hung up on the definitions.
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Example: Gram Matrix for the Dot Product

Consider x1, . . . ,xn ∈ Rd×1 with the standard inner product 〈x ,x ′〉= xT x ′.
Let X ∈ Rn×d be the design matrix, which has each input vector as a row:

X =

−xT1 −
...

−xTn −

 .

Then the Gram matrix is

K =

xT1 x1 · · · xT1 xn
...

. . . · · ·
xTn x1 · · · xTn xn

 =

−xT1 −
...

−xTn −


 | · · · |

x1 · · · xn
| · · · |


= XXT
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Simplifying the Reparametrized Norm

With w =
∑n

i=1αixi , we have

‖w‖2 = 〈w ,w〉

=

〈
n∑

i=1

αixi ,
n∑

j=1

αjxj

〉

=

n∑
i ,j=1

αiαj 〈xi ,xj〉

= αTKα.
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Simplifying the Training Score Vector

The score for xj for w =
∑n

i=1αixi is

〈w ,xj〉 =

〈
n∑

i=1

αixi ,xj

〉
=

n∑
i=1

αi 〈xi ,xj〉

The training score vector is

s

(
n∑

i=1

αixi

)
=


∑n

i=1αi 〈xi ,x1〉
...∑n

i=1αi 〈xi ,xn〉

 =

α1 〈x1,x1〉+ · · ·+αn 〈xn,x1〉
...

α1 〈x1,xn〉+ · · ·+αn 〈xn,xn〉


=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉


α1

...
αn


= Kα
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Reparameterized Objective

Putting it all together, our reparameterized objective function can be written as

J0(α) = R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(
s

(
n∑

i=1

αixi

))
= R

(√
αTKα

)
+L(Kα) ,

which we minimize over α ∈ Rn.
All information needed about x1, . . . ,xn is summarized in the Gram matrix K .
We’re now minimizing over Rn rather than Rd .
If d � n, this can be a big win computationally (at least once K is computed).
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Reparameterizing Predictions

Suppose we’ve found
α∗ ∈ argmin

α∈Rn
R
(√
αTKα

)
+L(Kα) .

Then we know w∗ =
∑n

i=1α
∗xi is a solution to

argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) .

The prediction on a new point x ∈H is

f̂ (x) = 〈w∗,x〉 =
n∑

i=1

α∗i 〈xi ,x〉 .

To make a new prediction, we may need to touch all the training inputs x1, . . . ,xn.
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More Notation

It will be convenient to define the following column vector for any x ∈H:

kx =

〈x1,x〉
...

〈xn,x〉


Then we can write our predictions on a new point x as

f̂ (x) = kTx α
∗
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Summary So Far

Original plan:
Find w∗ ∈ argminw∈HR (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)
Predict with f̂ (x) = 〈w∗,x〉.

We showed that the following is equivalent:

Find α∗ ∈ argminα∈Rn R
(√
αTKα

)
+L(Kα)

Predict with f̂ (x) = kTx α
∗, where

K =

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 and kx =

〈x1,x〉
...

〈xn,x〉


Every element x ∈H occurs inside an inner products with a training input xi ∈H.
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Kernelization

Definition
A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x ′). This applies to both the optimization problem and the prediction
function.

Here we are using ψ(x) = x . Thus finding

α∗ ∈ argmin
α∈Rn

R
(√
αTKα

)
+L(Kα)

and making predictions with f̂ (x) = kTx α
∗ is a kernelization of finding

w∗ ∈ argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

and making predictions with f̂ (x) = 〈w∗,x〉.
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How to kernelize?

Our principle tool for kernelization is reparameterization by the representer theorem.

There are other methods – we used duality for SVM and bare hands for ridge regression.

Below, we highlight key differences between
kernelized ridge regression and kernelized SVM at prediction time..

David S. Rosenberg (New York University) DS-GA 1003 February 26, 2019 44 / 55



Kernel Ridge Regression
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Kernelizing Ridge Regression

Ridge Regression:

min
w∈Rd

1
n
‖Xw − y‖2+λ‖w‖2

Plugging in w =
∑n

i=1αixi , we get the kernelized ridge regression objective function:

min
α∈Rn

1
n
‖Kα− y‖2+λαTKα

This is usually just called kernel ridge regression.
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Kernel Ridge Regression Solutions

For λ > 0, the ridge regression solution is

w∗ = (XTX +λI )−1XT y

and the kernel ridge regression solution is

α∗ = (XXT +λI )−1y

= (K +λI )−1y

(Shown in homework.)
For ridge regression we’re dealing with a d ×d matrix.
For kernel ridge regression we’re dealing an n×n matix.
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Predictions

Predictions in terms of w∗:
f̂ (x) = xTw∗

Predictions in terms of α∗:

f̂ (x) = kTx α
∗ =

n∑
i=1

α∗i x
T
i x

For kernel ridge regression, need to access all training inputs x1, . . . ,xn to predict.
For SVM, we may not...
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Kernel SVM
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Kernelized SVM (From Representer Theorem)

The SVM objective:

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yiw

T xi
)
.

Plugging in w =
∑n

i=1αixi , we get

min
α∈Rn

1
2
αTKα+

c

n

n∑
i=1

max(0,1− yi (Kα)i )

Predictions with

f̂ (x) = xTw∗ =
n∑

i=1

α∗i x
T
i x .

This is one way to kernelize SVM...
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Kernelized SVM (From Lagrangian Duality)

Kernelized SVM from computing the Lagrangian Dual Problem:

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

If α∗ is an optimal value, then

w∗ =
n∑

i=1

α∗i yixi and f̂ (x) =
n∑

i=1

α∗i yix
T
i x .

Note that the prediction function is also kernelized.
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Sparsity in the Data from Complementary Slackness

Kernelized predictions given by

f̂ (x) =
n∑

i=1

α∗i yix
T
i x .

By a Lagrangian duality analysis (specifically from complementary slackness), we find

yi f̂ (xi )< 1 =⇒ α∗i =
c

n

yi f̂ (xi ) = 1 =⇒ α∗i ∈
[
0,
c

n

]
yi f̂ (xi )> 1 =⇒ α∗i = 0

So we can leave out any xi “on the good side of the margin” (yi f̂ (xi )> 1).
xi ’s that we must keep, because α∗i 6= 0, are called support vectors.
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Are we done yet?
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Computational considerations – we’re not really done yet

Suppose our feature space is H = Rd .
And we use representer theorem to kernelize.
Get optimization problem over Rn rather than over Rd :

[original] w∗ = argmin
w∈Rd

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

[kernelized] α∗ = argmin
α∈Rn

R
(√
αTKα

)
+L(Kα)

This seems like a good move if d � n.
However, there is still a hidden dependence on d in the kernelized form – do you see it?
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Computational considerations – we’re not really done yet

Get optimization problem over Rn rather than over Rd :

[original] w∗ = argmin
w∈Rd

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

[kernelized] α∗ = argmin
α∈Rn

R
(√
αTKα

)
+L(Kα)

For the standard inner product, Kij = 〈xi ,xj〉= xTi xj , where xi ,xj ∈ Rd .
This is still O(d), and can be too slow for huge feature spaces.
The essence of the “kernel trick” is getting around this O(d) dependence.
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