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Parameters

Suppose we have a probability distribution P .
Often we want to estimate some characteristic of P .

e.g. expected value, variance, kurtosis, median, etc...

These things are called parameters of P .
A parameter µ= µ(P) is any function of the distribution P .
Question: Is µ random?
Answer: Nope. For example if P has density f (x) on R, then mean is

µ=

∫∞
−∞ xf (x)dx ,

which is just an integral - nothing random.
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Statistics and Estimators

Suppose Dn = (x1,x2, . . . ,xn) is an i.i.d. sample from P .
A statistic s = s(Dn) is any function of the data.
A statistic µ̂= µ̂(Dn) is a point estimator of µ if µ̂≈ µ.
Question: Are statistics and/or point estimators random?
Answer: Yes, since we’re considering the data to be random.

The function s(·) isn’t random, but we’re plugging in random inputs.
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Examples of Statistics

Mean: x̄(Dn) =
1
n

∑n
i=1 xi .

Median: m(Dn) =median(x1, . . . ,xn)

Sample variance: σ2(Dn) =
1

n−1
∑n

i=1 (xi − x̄(Dn))
2

Fancier:
A data histogram is a statistic.
Empirical distribution function.
A confidence interval.
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Statistics are Random

Statistics are random, so they have probability distributions.

The distribution of a statistic is called a sampling distribution.

We often want to know some parameters of the sampling distribution.
Most commonly the mean and the standard deviation.

The standard deviation of the sampling distribution is called the standard error.

Question: Is standard error random?

Answer: Nope. It’s a parameter of a distribution.
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Bias and Variance for Real-Valued Estimators

Let µ= µ(P) be a real-valued parameter of distribution P .
Let µ̂= µ̂(Dn) be a point estimator of µ.

We define the bias of µ̂ to be Bias(µ̂) = Eµ̂−µ.
An estimator is unbiased if Bias(µ̂) = Eµ̂−µ= 0.
We define the variance of µ̂ to be Var(µ̂) = Eµ̂2−(Eµ̂)2.

Neither bias nor variance depend on a specific sample Dn. We are taking expectation over Dn.

Why might we care about the bias and variance of an estimator?
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Putting “Error Bars” on Estimators

Why do we even care about estimating variance?
May want to report a confidence interval for our point estimate, e.g.

µ̂±
√

V̂ar(µ̂)

Where
√

V̂ar(µ̂) is our estimate of the standard error of µ̂.
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Estimating Variance of an Estimator

To estimate Var(µ̂), we can use estimates of Eµ̂ and Eµ̂2.
Instead of a single sample Dn of size n, suppose we had

B independent samples of size n: D1
n,D2

n, . . . ,DB
n

Can then estimate

Eµ̂ ≈ 1
B

B∑
i=1

µ̂
(
Di

n

)
Eµ̂2 ≈ 1

B

B∑
i=1

[
µ̂
(
Di

n

)]2
and

Var(µ̂)≈ 1
B

B∑
i=1

[
µ̂
(
Di

n

)]2
−

[
1
B

B∑
i=1

µ̂
(
Di

n

)]2

.
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Histogram of Estimator

Want to estimate α= α(P) ∈ R for some unknown P , and some complicated α.
Point estimator α̂= α̂(D100) for samples of size 100.
How to get error bars on α̂?
Histogram of α̂ for 1000 random datasets of size 100 (estimates sampling distribution of
α̂):

Pink line indicates true value of α. This is Figure 5.10 from An Introduction to Statistical Learning, with applications in R (Springer, 2013)
with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Practical Issue

We typically get only one sample Dn.
We could divide it into B groups.

Could use first group as point estimator µ̂= µ̂
(
D

(1)
n/B

)
,

And use the remaining groups D(2)
n/B , . . . ,D

(B)
n/B to get a variance estimate for µ̂(D(1)

n/B)

But then our point estimate only uses a fraction of the data.
Would be much better if we used all the data: µ̂= µ̂(Dn).

Can we get the best of both worlds?
A good point estimate AND a variance estimate?
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The Bootstrap
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The Bootstrap Sample

A bootstrap sample from Dn = (x1, . . . ,xn) is a sample of size n drawn with replacement
from Dn.

In a bootstrap sample, some elements of Dn

will show up multiple times, and
some won’t show up at all.

Each xi has a probability of (1−1/n)n of not being selected.
Recall from analysis that for large n,(

1−
1
n

)n

≈ 1
e
≈ .368.

So we expect ~63.2% of elements of D will show up at least once.
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The Bootstrap Sample
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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The Bootstrap Method

Definition
A bootstrap method is when you simulate having B independent samples from P by taking B
bootstrap samples from the sample Dn.

Given original data Dn, compute B bootstrap samples D1
n , . . . ,DB

n .
For each bootstrap sample, compute some function

φ(D1
n), . . . ,φ(DB

n )

Work with these values as though D1
n , . . . ,DB

n were i.i.d. P .
Amazing fact: Things often come out very close to what we’d get with independent
samples from P .
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Independent vs Bootstrap Samples

Want to estimate α= α(P) for some unknown P and some complicated α.
Point estimator α̂= α̂(D100) for samples of size 100.
Histogram of α̂ based on

1000 independent samples of size 100, vs
1000 bootstrap samples of size 100

Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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The Bootstrap in Practice

Suppose we have an estimator µ̂= µ̂(Dn).

To get error bars, we can compute the “bootstrap variance”.
Draw B bootstrap samples.
Compute sample or empirical variance of µ̂(D1

n), . . . , µ̂(DB
n )..

Could report
µ̂(Dn)±

√
Bootstrap Variance
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