Gradient Boosting

David S. Rosenberg

New York University

April 10, 2018
Introduction
Nonlinear Regression

Suppose we have the following regression problem:

- What are some options?
- basis functions, kernel methods, trees, neural nets, …
Choose some basis functions on input space \mathcal{X}:

$$g_1, \ldots, g_M : \mathcal{X} \rightarrow \mathbb{R}$$

Predict with linear combination of basis functions:

$$f(x) = \sum_{m=1}^{M} \nu_m g_m(x)$$

Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)

In ML parlance, basis functions are called **features** or **feature functions**.
Not Limited to Regression

- Linear combination of basis functions:

\[f(x) = \sum_{m=1}^{M} \nu_m g_m(x) \]

- \(f(x) \) is a number — for regression, it’s exactly what we’re looking for.
- Otherwise, \(f(x) \) is often called a **score** function.
- It can be
 - thresholded to get a classification
 - transformed to get a probability
 - transformed to get a parameter of a probability distribution (e.g. Poisson regression)
 - used for ranking search results
Let’s “learn” the basis functions.

Base hypothesis space \mathcal{H} consisting of functions $h : \mathcal{X} \rightarrow \mathbb{R}$.
- We will choose our “basis functions” or “features” from this set of functions.

An **adaptive basis function expansion** over \mathcal{H} is

$$ f(x) = \sum_{m=1}^{M} \nu_m h_m(x), $$

where $\nu_m \in \mathbb{R}$ and $h_m \in \mathcal{H}$ are chosen based on training data.
Base hypothesis space: \mathcal{H} of real-valued functions

Combined hypothesis space: \mathcal{F}_M:

$\mathcal{F}_M = \left\{ \sum_{m=1}^{M} v_m h_m(x) \mid v_m \in \mathbb{R}, h_m \in \mathcal{H}, m = 1, \ldots, M \right\}$

Suppose we’re given some data $\mathcal{D} = ((x_1, y_1), \ldots, (x_n, y_n))$.

Learning is choosing $v_1, \ldots, v_M \in \mathbb{R}$ and $h_1, \ldots, h_M \in \mathcal{H}$ to fit \mathcal{D}.
Empirical Risk Minimization

- We’ll consider learning by **empirical risk minimization**:

\[
\hat{f} = \arg\min_{f \in \mathcal{F}_M} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)),
\]

for some **loss function** \(\ell(y, \hat{y}) \).

- Write ERM objective function as

\[
J(v_1, \ldots, v_M, h_1, \ldots, h_M) = \frac{1}{n} \sum_{i=1}^{n} \ell \left(y_i, \sum_{m=1}^{M} v_m h_m(x) \right).
\]

- How to optimize \(J \)? i.e. how to learn?
Suppose our base hypothesis space is parameterized by $\Theta = \mathbb{R}^b$:

$$J(v_1, \ldots, v_M, \theta_1, \ldots, \theta_M) = \frac{1}{n} \sum_{i=1}^{n} \ell \left(y_i, \sum_{m=1}^{M} v_m h(x; \theta_m) \right).$$

Can we differentiate J w.r.t. v_m’s and θ_m’s? Optimize with SGD?

For some hypothesis spaces and typical loss functions, yes!

Neural networks fall into this category! (h_1, \ldots, h_M are neurons of last hidden layer.)
What if Gradient Based Methods Don’t Apply?

What if base hypothesis space \mathcal{H} consists of decision trees?

Can we even parameterize trees with $\Theta = \mathbb{R}^b$?

Even if we could for some set of trees,
 - predictions would not change continuously w.r.t. $\theta \in \Theta$,
 - and so certainly not differentiable.

Today we’ll discuss **gradient boosting**. It applies whenever
 - our loss function is [sub]differentiable w.r.t. training predictions $f(x_i)$, and
 - we can do regression with the base hypothesis space \mathcal{H} (e.g. regression trees).
Overview

- **Forward stagewise additive modeling (FSAM)**
 - example: L^2 Boosting
 - example: exponential loss gives AdaBoost
 - Not clear how to do it with many other losses, including logistic loss

- **Gradient Boosting**
 - example: logistic loss gives BinomialBoost

- **Variations on Gradient Boosting**
 - step size selection
 - stochastic row/column selection
 - Newton step direction
 - XGBoost
Forward Stagewise Additive Modeling
Forward Stagewise Additive Modeling (FSAM)

- FSAM is an iterative optimization algorithm for fitting adaptive basis function models.
- Start with $f_0 \equiv 0$.
- After $m - 1$ stages, we have
 \[f_{m-1} = \sum_{i=1}^{m-1} \nu_i h_i. \]

- In m'th round, we want to find
 - **step direction** $h_m \in \mathcal{H}$ (i.e. a basis function) and
 - **step size** $\nu_i > 0$

 such that
 \[f_m = f_{m-1} + \nu_i h_m \]

 improves objective function value by as much as possible.
Forward Stagewise Additive Modeling for ERM

1. Initialize $f_0(x) = 0$.

2. For $m = 1$ to M:
 1. Compute:
 $$(\nu_m, h_m) = \arg\min_{\nu \in \mathbb{R}, h \in \mathcal{H}} \frac{1}{n} \sum \ell \left(y_i, f_{m-1}(x_i) + \nu h(x_i) \right).$$
 2. Set $f_m = f_{m-1} + \nu_m h$.

Example: L^2 Boosting
Example: L^2 Boosting

- Suppose we use the **square loss**. Then in each step we minimize

 $$ J(v, h) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) + vh(x_i) \right] \right)^2 $$

- If \mathcal{H} is closed under rescaling (i.e. if $h \in \mathcal{H}$, then $vh \in \mathcal{H}$ for all $h \in \mathbb{R}$), then don’t need v.
- Take $v = 1$ and minimize

 $$ J(h) = \frac{1}{n} \sum_{i=1}^{n} \left([y_i - f_{m-1}(x_i)] - h(x_i) \right)^2 $$

- This is just fitting the residuals with least-squares regression!
- If we can do regression with our base hypothesis space \mathcal{H}, then we’re set!
A regression stump is a regression tree with a single split. A regression stump is a function of the form $h(x) = a1(x_i \leq c) + b1(x_i > c)$.

Plot courtesy of Brett Bernstein.
Consider FSAM with L^2 loss (i.e. L^2 Boosting)
- For base hypothesis space of regression stumps
- Data we’ll fit with code:

Plot courtesy of Brett Bernstein.
L^2 Boosting with Decision Stumps: Results
L^2 Boosting with Decision Stumps: Results

Least Squares From Stage 2 -> 3 (Press any key to advance)

Least Squares From Stage 3 -> 4 (Press any key to advance)
L^2 Boosting with Decision Stumps: Results

Least Squares From Stage 4 -> 5 (Press any key to advance)

Least Squares From Stage 49 -> 50 (Press any key to advance)
Example: AdaBoost
The Classification Problem

- Outcome space $\mathcal{Y} = \{-1, 1\}$
- Action space $\mathcal{A} = \mathbb{R}$
- Score function $f : \mathcal{X} \rightarrow \mathcal{A}$.
- Margin for example (x, y) is $m = yf(x)$.
 - $m > 0 \iff$ classification correct
 - Larger m is better.
Margin-Based Losses for Classification

Losses for Classification:

- **Zero-One Loss**: Constant loss for misclassification.
- **Hinge Loss**: Linear increase with margin.
- **Logistic Loss**: Exponential decrease with margin.

Graph showing the relationship between loss and margin for different loss functions.
Introduce the exponential loss: \(\ell(y, f(x)) = \exp(-yf(x)) \).
Consider classification setting: \(y = \{-1, 1\} \).

Take loss function to be the exponential loss:

\[
\ell(y, f(x)) = \exp(-yf(x)).
\]

Let \(\mathcal{H} \) be a base hypothesis space of classifiers \(h : \mathcal{X} \rightarrow \{-1, 1\} \).

(Also assume \(\mathcal{H} \) closed under negation: \(h \in \mathcal{H} \implies -h \in \mathcal{H} \))

Then Forward Stagewise Additive Modeling (FSAM) reduces to a version of AdaBoost.

Proof on Spring 2017 Homework #6, Problem 4 (and see HTF Section 10.4).
Exponential Loss

- Note that exponential loss puts a very large weight on bad misclassifications.
AdaBoost / Exponential Loss: Robustness Issues

- When Bayes error rate is high (e.g. $\mathbb{P}(f^*(X) \neq Y) = 0.25$)
 - e.g. there’s some intrinsic randomness in the label
 - e.g. training examples with same input, but different classifications.

- Best we can do is predict the most likely class for each X.
- Some training predictions should be wrong,
 - because example doesn’t have majority class
 - AdaBoost / exponential loss puts a lot of focus on getting those right

- Empirically, AdaBoost has degraded performance in situations with
 - high Bayes error rate, or when there’s
 - high “label noise”

- Logistic loss performs better in settings with high Bayes error
FSAM for Other Loss Functions

- We know how to do FSAM for certain loss functions
 - e.g. square loss, absolute loss, exponential loss, ...
- In each case, happens to reduce to another problem we know how to solve, at least approximately.
- However, not clear how to do FSAM in general.
- For example, logistic loss / cross-entropy loss?
Gradient Boosting / “Anyboost”
The FSAM step

\[(\nu_m, h_m) = \arg\min_{\nu \in \mathbb{R}, h \in \mathcal{K}} \sum_{i=1}^{n} \ell(y_i, f_{m-1}(x_i) + \nu h(x_i)) \]

Hard part: finding the best step direction \(h\).

What if we looked for the locally best step direction?
- like in gradient descent
“Functional” Gradient Descent

- We want to minimize
 \[J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)). \]
- In some sense, we want to take the gradient w.r.t. “f”, whatever that means.
- \(J(f) \) only depends on \(f \) at the \(n \) training points.
- Define
 \[f = (f(x_1), \ldots, f(x_n))^T \]
 and write the objective function as
 \[J(f) = \sum_{i=1}^{n} \ell(y_i, f_i). \]
Consider gradient descent on

\[J(f) = \sum_{i=1}^{n} \ell (y_i, f_i) \].

The negative gradient step direction at \(f \) is

\[
-g = -\nabla_f J(f) \\
= -(\partial_{f_1} \ell (y_1, f_1), \ldots, \partial_{f_n} \ell (y_n, f_n))
\]

which we can easily calculate.

\(-g \in \mathbb{R}^n\) is the direction we want to change each of our \(n \) predictions on training data.

Eventually we need more than just \(f \), which is just predictions on training.
Functional Gradient Descent: Projection Step

- Unconstrained step direction is

\[-g = -\nabla_f J(f) = -(\partial_{f_1} \ell(y_1, f_1), \ldots, \partial_{f_n} \ell(y_n, f_n)).\]

- Also called the “pseudo-residuals”
 - (for square loss, they’re exactly the residuals)

- Find the closest base hypothesis \(h \in \mathcal{H} \) (in the \(\ell^2 \) sense):

\[
\min_{h \in \mathcal{H}} \sum_{i=1}^{n} (-g_i - h(x_i))^2.
\]

- This is a least squares regression problem over hypothesis space \(\mathcal{H} \).
- Take the \(h \in \mathcal{H} \) that best approximates \(-g\) as our step direction.
Finally, we choose a stepsize.

Option 1 (Line search):

\[\nu_m = \arg \min_{\nu > 0} \sum_{i=1}^{n} \ell \{ y_i, f_{m-1}(x_i) + \nu h_m(x_i) \}. \]

Option 2: (Shrinkage parameter – more common)

- We consider \(\nu = 1 \) to be the full gradient step.
- Choose a fixed \(\nu \in (0, 1) \) – called a shrinkage parameter.
- A value of \(\nu = 0.1 \) is typical – optimize as a hyperparameter.
The Gradient Boosting Machine Ingredients (Recap)

- Take any loss function \([\text{sub}]\)differentiable \(w.r.t.\) the prediction
- Choose a base hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you’re good to go!
Example: BinomialBoost
Recall the logistic loss for classification, with $y = \{-1, 1\}$:

$$\ell(y, f(x)) = \log \left(1 + e^{-yf(x)} \right)$$

Pseudoresidual for i'th example is negative derivative of loss w.r.t. prediction:

$$r_i = -\partial_f(x_i) \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right]$$

$$= \frac{y_i e^{-y_i f(x_i)}}{1 + e^{-y_i f(x_i)}}$$

$$= \frac{y_i}{1 + e^{y_i f(x_i)}}$$
BinomialBoost: Gradient Boosting with Logistic Loss

- Pseudoresidual for \(i \)th example:
 \[r_i = -\partial f(x_i) \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right] = \frac{y_i}{1 + e^{y_i f(x_i)}} \]

- So if \(f_{m-1}(x) \) is prediction after \(m-1 \) rounds, step direction for \(m \)'th round is
 \[h_m = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\left(\frac{y_i}{1 + e^{y_i f_{m-1}(x_i)}} \right) - h(x_i) \right]^2. \]

- And \(f_m(x) = f_{m-1}(x) + \nu h_m(x) \).
Gradient Tree Boosting
One common form of gradient boosting machine takes

\[\mathcal{H} = \{ \text{regression trees of size } J \}, \]

where \(J \) is the number of terminal nodes.

- \(J = 2 \) gives decision stumps
- HTF recommends \(4 \leq J \leq 8 \) (but more recent results use much larger trees)
- Software packages:
 - Gradient tree boosting is implemented by the \texttt{gbm package} for R
 - as \texttt{GradientBoostingClassifier} and \texttt{GradientBoostingRegressor} in \texttt{sklearn}
 - \texttt{xgboost} and \texttt{lightGBM} are state of the art for speed and performance
GBM Regression with Stumps
Sinc Function: Our Dataset

From Natekin and Knoll's "Gradient boosting machines, a tutorial"
Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with 1, 10, 50, and 100 steps, step size $\lambda = 1$.

Figure 3 from Natekin and Knoll's "Gradient boosting machines, a tutorial"
Step Size as Regularization

Performance vs rounds of boosting and step size. (Left is training set, right is validation set)

Figure 5 from Natekin and Knoll's "Gradient boosting machines, a tutorial"
Rule of Thumb

- The smaller the step size, the more steps you'll need.
- But never seems to make results worse, and often better.
- So set your step size as small as you have patience for.
Variations on Gradient Boosting
Stochastic Gradient Boosting

- For each stage,
 - choose random subset of data for computing projected gradient step.
 - “Typically, about 50% of the dataset size, can be much smaller for large training set.”
 - Fraction is called the **bag fraction**.

- Why do this?
 - Subsample percentage is additional regularization parameter – may help overfitting.
 - Faster.

- We can view this is a **minibatch method**.
 - we’re estimating the “true” step direction (the projected gradient) using a subset of data

Introduced by Friedman (1999) in *Stochastic Gradient Boosting.*
Just as we argued for minibatch SGD,
- sample size needed for a good estimate of step direction is independent of training set size

Minibatch size should depend on
- the complexity of base hypothesis space
- the complexity of the target function (Bayes decision function)

Seems like an interesting area for both practical and theoretical pursuit.
Similar to random forest, randomly choose a subset of features for each round.

XGBoost paper says: “According to user feedback, using column sub-sampling prevents overfitting even more so than the traditional row sub-sampling.”

Zhao Xing (top Kaggle competitor) finds optimal percentage to be 20%-100%
Newton Step Direction

- For GBM, we find the closest \(h \in \mathcal{F} \) to the negative gradient
 \[
 -g = -\nabla_f J(f).
 \]

- This is a “first order” method.

- Newton’s method is a “second order method”:
 - Find 2nd order (quadratic) approximation to \(J \) at \(f \).
 - Requires computing gradient and Hessian of \(J \).
 - Newton step direction points towards minimizer of the quadratic.
 - Minimizer of quadratic is easy to find in closed form

- Boosting methods with projected Newton step direction:
 - LogitBoost (logistic loss function)
 - XGBoost (any loss – uses regression trees for base classifier)
Newton Step Direction for GBM

- Generically, second order Taylor expansion of J at f in direction r

$$J(f + r) = J(f) + [\nabla_f J(f)]^T r + \frac{1}{2} r^T [\nabla^2_f J(f)] r$$

- For $J(f) = \sum_{i=1}^{n} \ell(y_i, f_i)$,

$$J(f + r) = \sum_{i=1}^{n} \left[\ell(y_i, f_i) + g_i r_i + \frac{1}{2} h_i r_i^2 \right],$$

where $g_i = \partial_{f_i} \ell(y_i, f_i)$ and $h_i = \partial^2_{f_i f_i} \ell(y_i, f_i)$.

- Can find r that minimizes $J(f + r)$ in closed form.

- Can take step direction to be “projection” of r into base hypothesis space \mathcal{H}.

David S. Rosenberg (New York University)
DS-GA 1003 / CSCI-GA 2567
April 10, 2018 53 / 58
XGBoost: Objective Function with Tree Penalty Term

- Adds explicit penalty term on tree complexity to the empirical risk:

\[\Omega(r) = \gamma T + \frac{1}{2} \lambda \sum_{i=1}^{T} w_j^2, \]

where \(r \in \mathcal{H} \) is a regression tree from our base hypothesis space and
- \(T \) is the number of leaf nodes and
- \(w_j \) is the prediction in the \(j \)'th node

- Objective function at step \(m \):

\[J(r) = \sum_{i=1}^{n} \left[g_i r(x_i) + \frac{1}{2} h_i r(x_i)^2 \right] + \Omega(r) \]

- In XGBoost, they also use this objective to decide on tree splits

- See XGBoost Introduction for a nice introduction.
XGBoost: Rewriting objective function

For a given tree, let $q(x_i)$ be x_i’s node assignment and w_j the prediction for node j.

In each step of XGBoost we’re looking for a tree that minimizes

$$\sum_{i=1}^{n} \left[g_i w_{q(x_i)} + \frac{1}{2} h_i w_{q(x_i)}^2 \right] + \gamma T + \frac{1}{2} \lambda \sum_{i=1}^{T} w_j^2$$

$$= \sum_{\text{leaf node } j=1}^{T} \left[\left(\sum_{i \in I_j} g_i \right) w_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) w_j^2 \right] + \gamma T,$$

where $I_j = \{i \mid q(x_i) = j\}$ is set of training example indices landing in leaf j.
XGBoost: Simple Expression for Tree Penalty/Loss

- Simplifies to

\[
\sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T
\]

- For fixed \(q(x) \) (i.e. fixed tree partitioning), objective minimized when leaf node values are

\[w_j^* = -\frac{G_j}{(H_j + \lambda)}. \]

- Plugging \(w_j^* \) back in, this objective reduces to

\[
-\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T,
\]

which we can think of as the loss for tree partitioning function \(q(x) \).

- If time were no issue, we could search over all trees to minimize this objective.
XGBoost: Building Tree Using Objective Function

- Expression to evaluate a tree’s node assignment function $q(x)$:
 \[-\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T, \]
 where $G_j = \sum_{i \in I_j} g_i$ for examples i assigned to leaf node j. And $H_j = \sum_{i \in I_j} h_i$.

- Suppose we’re considering splitting some data into two nodes: L and R.
- Loss of tree with this one split is
 \[-\frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} \right] + 2\gamma. \]

- Without the split – i.e. a tree with a single leaf node, loss is
 \[-\frac{1}{2} \left[\frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] + \gamma. \]
We can define the **gain** of a split to be the reduction in objective between tree with and without split:

$$
\text{Gain} = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma.
$$

Tree building method:

- recursively choose split that maximizes the gain.