Neural Networks

Julia Kempe & David S. Rosenberg

CDS, NYU

April 24 & 30, 2019
Neural Networks Overview
Linear Prediction Functions

- Linear prediction functions: SVM, ridge regression, Lasso
- Generate the feature vector $\phi(x)$ by hand.
- Learn parameter vector w from data.

So for $w \in \mathbb{R}^3$, $\text{score} = w^T \phi(x)$

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
Add an extra layer with hidden nodes h_1 and h_2:

![Diagram of a neural network with hidden nodes h_1 and h_2.]

For parameter vector $v_i \in \mathbb{R}^3$, define

$$h_i = \sigma(v_i^T \phi(x)),$$

where σ is a nonlinear activation function. (We'll come back to this.)
For parameters $w_1, w_2 \in \mathbb{R}$, score is just

$$\text{score} = w_1 h_1 + w_2 h_2$$

$$= w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))$$

This is the basic recipe.

- We can add more hidden nodes.
- We can add more hidden layers. (> 1 hidden layer is a “deep network”.)
Activation Functions

- The hyperbolic tangent is a common activation function these days:

\[\sigma(x) = \tanh(x). \]
Activation Functions

• More recently, the **rectified linear** function has been very popular:
 \[\sigma(x) = \max(0, x). \]

• "**ReLU**" is much faster to calculate, and to calculate its derivatives.
• Also often seems to work better.
Example: Regression with Multilayer Perceptrons (MLPs)
MLP Regression

- **Input space**: \(X = \mathbb{R} \)
- **Action Space / Output space**: \(A = y = \mathbb{R} \)
- **Hypothesis space**: MLPs with a single 3-node hidden layer:
 \[
 f(x) = w_0 + w_1 h_1(x) + w_2 h_2(x) + w_3 h_3(x),
 \]
 where
 \[
 h_i(x) = \sigma(v_i x + b_i) \text{ for } i = 1, 2, 3,
 \]
 for some fixed nonlinear “activation function” \(\sigma : \mathbb{R} \to \mathbb{R} \).
- **What are the parameters we need to fit?**
 \[
 b_1, b_2, b_3, v_1, v_2, v_3, w_0, w_1, w_2, w_3 \in \mathbb{R}
 \]
Multilayer Perceptron for $f : \mathbb{R} \rightarrow \mathbb{R}$

- MLP with one hidden layer; σ typically tanh or RELU; $x, h_1, h_2, h_3, \hat{y} \in \mathbb{R}$.

\[
\begin{align*}
h_1 &= \sigma(v_1 x + b_1) \\
h_2 &= \sigma(v_2 x + b_2) \\
h_3 &= \sigma(v_3 x + b_3) \\
\hat{y} &= w_0 + \sum_{i=1}^{3} w_i h_i
\end{align*}
\]
Hidden Layer as Feature/Basis Functions

- Can think of $h_i = h_i(x) = \sigma(v_i x + b_i)$ as a feature of x.
 - Learned by fitting the parameters v_i and b_i.
- Here are some $h_i(x)$’s for $\sigma = \tanh$ and randomly chosen v_i and b_i:

![Graph of hidden layer functions](image-url)
Samples from the Hypothesis Space

- Choosing 6 sets of random settings for $b_1, b_2, b_3, v_1, v_2, v_3, w_0, w_1, w_2, w_3 \in \mathbb{R}$, we get the following score functions:
How to choose the best hypothesis?

- As usual, choose our prediction function using empirical risk minimization.
- Our hypothesis space is parameterized by
 \[\theta = (b_1, b_2, b_3, v_1, v_2, v_3, w_0, w_1, w_2, w_3) \in \Theta = \mathbb{R}^{10}. \]
- For a training set \((x_1, y_1), \ldots, (x_n, y_n)\), find
 \[\hat{\theta} = \arg \min_{\theta \in \mathbb{R}^{10}} \frac{1}{n} \sum_{i=1}^{n} (f_\theta(x_i) - y_i)^2. \]
- Do we have the tools to find \(\hat{\theta}\)?
- Not quite, but close enough...
Gradient Methods for MLPs

- Note that

\[f(x) = w_0 + \sum_{i=1}^{3} w_i h_i(x) \]

\[= w_0 + \sum_{i=1}^{3} w_i \tanh(v_i x + b_i) \]

is differentiable w.r.t. all parameters.

- We can use gradient-based methods as usual.

- However, the objective function is not convex w.r.t. parameters.

- So we can only hope to converge to a local minimum.

- In practice, this seems to be good enough.
Approximation Properties of Multilayer Perceptrons
Approximation Ability: $f(x) = x^2$

- 3 hidden units; tanh activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s *Pattern Recognition and Machine Learning*, Fig 5.3
Approximation Ability: $f(x) = \sin(x)$

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s *Pattern Recognition and Machine Learning*, Fig 5.3
Approximation Ability: $f(x) = |x|$

- 3 hidden units; logistic activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s *Pattern Recognition and Machine Learning*, Fig 5.3
Approximation Ability: $f(x) = 1(x > 0)$

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s *Pattern Recognition and Machine Learning*, Fig 5.3
Universal Approximation Theorems

- Leshno and Schocken (1991) showed:
 - A neural network with one [possibly huge] hidden layer can uniformly approximate any continuous function on a compact set iff the activation function is not a polynomial (i.e. tanh, logistic, and ReLU all work, as do sin, cos, exp, etc.).

- In more words:
 - Let $\varphi(\cdot)$ be any non-polynomial function (an activation function).
 - Let $f : K \to \mathbb{R}$ be any continuous function on a compact set $K \subset \mathbb{R}^m$.
 - Then $\forall \varepsilon > 0$, there exists an integer N (the number of hidden units), and parameters $v_i, b_i \in \mathbb{R}$ and $w_i \in \mathbb{R}^m$ such that the function
 \[
 F(x) = \sum_{i=1}^{N} v_i \varphi(w_i^T x + b_i)
 \]
 satisfies $|F(x) - f(x)| < \varepsilon$ for all $x \in K$.

- Leshno & Schocken note that this doesn’t work without the bias term b_i (they call it the threshold term). (e.g. consider $\varphi = \sin$: then we always have $F(-x) = -F(x)$)
Review: Multinomial Logistic Regression
Recall: Multinomial Logistic Regression

- Setting: \(\mathcal{X} = \mathbb{R}^d, \mathcal{Y} = \{1, \ldots, k\} \)
- For each \(x \), we want to produce a distribution on \(k \) classes.
- Such a distribution is called a "multinoulli" or "categorical" distribution.
- Represent categorical distribution by probability vector \(\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{R}^k \), where
 - \(\sum_{y=1}^{k} \theta_y = 1 \) and \(\theta_y \geq 0 \) for \(y \in \{1, \ldots, k\} \).
Multinomial Logistic Regression

- From each x, we compute a linear score function for each class:

$$x \mapsto (\langle w_1, x \rangle, \ldots, \langle w_k, x \rangle) \in \mathbb{R}^k$$

- We need to map this \mathbb{R}^k vector into a probability vector θ.

- The **softmax function** maps scores $s = (s_1, \ldots, s_k) \in \mathbb{R}^k$ to a categorical distribution:

$$(s_1, \ldots, s_k) \mapsto \theta = \text{Softmax}(s_1, \ldots, s_k) = \left(\frac{\exp(s_1)}{\sum_{i=1}^k \exp(s_i)}, \ldots, \frac{\exp(s_k)}{\sum_{i=1}^k \exp(s_i)}\right)$$
Let \(y \in \{1, \ldots, k\} \) be an index denoting a class.

Then predicted probability for class \(y \) given \(x \) is

\[
\hat{p}(y | x) = \text{Softmax}(\langle w_1, x \rangle, \ldots, \langle w_k, x \rangle)_y,
\]

where the \(y \) subscript indicates taking the \(y \)'th entry of the vector produced Softmax.

- **Learning**: Maximize the log-likelihood of training data

\[
\arg \max_{w_1, \ldots, w_k \in \mathbb{R}^d} \sum_{i=1}^{n} \log \left[\text{Softmax}(\langle w_1, x_i \rangle, \ldots, \langle w_k, x_i \rangle)_y i \right].
\]

- This objective function is concave in \(w \)'s and straightforward to optimize.
Standard MLP for Multiclass
Nonlinear Generalization of Multinomial Logistic Regression

- **Key change**: Rather than k linear score functions

 $$x \mapsto (\langle w_1, x \rangle, \ldots, \langle w_k, x \rangle) \in \mathbb{R}^k,$$

 use nonlinear score functions:

 $$x \mapsto (f_1(x), \ldots, f_k(x)) \in \mathbb{R}^k,$$

- Then predicted probability for class $y \in \{1, \ldots, k\}$ given x is

 $$\hat{p}(y \mid x) = \text{Softmax}(f_1(x), \ldots, f_k(x))_y.$$
Nonlinear Generalization of Multinomial Logistic Regression

- **Learning**: Maximize the log-likelihood of training data

\[
\arg\max_{f_1,\ldots,f_k} \sum_{i=1}^n \log \left[\text{Softmax} \left(f_1(x), \ldots, f_k(x) \right)_{y_i} \right].
\]

- We could use gradient boosting to get \(f_i \)'s as ensembles of regression trees.
- Today we’ll learn to use a multilayer perceptron for \(f : \mathbb{R}^d \rightarrow \mathbb{R}^k \).
- Unfortunately, this objective function will not be concave or convex.
- But we can still use gradient methods to find a good local optimum.
Multilayer Perceptron: Standard Recipe

- **Input space**: $\mathcal{X} = \mathbb{R}^d$
- **Action space**: $\mathcal{A} = \mathbb{R}^k$ (for k-class classification).
- Let $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ be a non-polynomial activation function (e.g. tanh or ReLU).
- Let’s take all hidden layers to have m units.
- First hidden layer is given by

$$h^{(1)}(x) = \sigma \left(W^{(1)} x + b^{(1)} \right),$$

for parameters $W^{(1)} \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and where $\sigma(\cdot)$ is applied to each entry of its argument.
Each subsequent hidden layer takes the output $o \in \mathbb{R}^m$ of previous layer and produces

$$h^{(j)}(o) = \sigma \left(W^{(j)} o + b^{(j)} \right), \text{ for } j = 1, \ldots, D$$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$, and D is the number of hidden layers.

Last layer is an affine mapping:

$$a(o) = W^{(D+1)} o + b^{(D+1)},$$

where $W^{(D+1)} \in \mathbb{R}^{k \times m}$ and $b^{(D+1)} \in \mathbb{R}^k$.
So the full neural network function is given by the composition of layers:

\[f(x) = \left(a \circ h^{(D)} \circ \cdots \circ h^{(1)} \right)(x) \]

This gives us the \(k \) score functions we need.

To train this we maximize the conditional log-likelihood for the training data:

\[
J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log \left[\text{Softmax}(f(x_i)) y_i \right],
\]

where \(\theta = (W^{(1)}, \ldots, W^{(D+1)}, b^{(1)}, \ldots, b^{(D+1)}) \).
Neural Networks for Features
OverFeat: Features

- OverFeat is a neural network for image classification
 - Trained on the huge ImageNet dataset
 - Lots of computing resources used for training the network.
- All those hidden layers of the network are very valuable features.
 - Paper: “CNN Features off-the-shelf: an Astounding Baseline for Recognition”
 - Showed that using features from OverFeat makes it easy to achieve state-of-the-art performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/OverFeat
Multiple Output Networks
Multiple Output Neural Networks

- Very easy to add extra outputs to neural network structure.

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)
Suppose $\mathcal{X} = \{\text{Natural Images}\}$.

We have two tasks:

- Does the image have a cat?
- Does the image have a dog?

Can have one output for each task.

Seems plausible that basic pixel features would be shared by tasks.

Learn them on the same neural network – benefit both tasks.

Objective function must combine losses from both predictions, e.g. by averaging.
Single Task with “Extra Tasks”

- Only one task we’re interested in.
- Gather data from related tasks.
- Train them along with the task you’re interested in.
- No related tasks? Another trick:
 - Choose any input feature.
 - Change it’s value to zero.
 - Make the prediction problem to predict the value of that feature.
 - Can help make model more robust (not depending too heavily on any single input).
Neural Networks: When and why?
Neural Networks Benefit from Big Data

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)
Big Data Requires Big Resources

- Best results always involve GPU processing.
- Often on large networks.

Google Brain

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)