Back Propagation and the Chain Rule

David S. Rosenberg

New York University

April 17, 2018
Introduction
Learning with Back-Propagation

- Back-propagation is an **algorithm** for computing the gradient.
- With lots of chain rule, you could also work out the gradient by hand.
- Back-propagation is:
 - a clean way to organize the computation of the gradient
 - an efficient way to compute the gradient
Partial Derivatives and the Chain Rule
Partial Derivatives

- Consider a function \(g : \mathbb{R}^p \rightarrow \mathbb{R}^n \).

 - Typical computation graph:

```
    a → g → b
    \( \mathbb{R}^p \) \( \mathbb{R}^n \)
```

 - Broken out into components:

```
    g
    \( a_1 \) \( \cdots \) \( a_p \)  \( b_1 \) \( \cdots \) \( b_n \)
    \( a \in \mathbb{R}^p \) \( b \in \mathbb{R}^n \)
```
Partial Derivatives

- Consider a function \(g : \mathbb{R}^p \to \mathbb{R}^n \).

 - Partial derivative \(\frac{\partial b_i}{\partial a_j} \) is the instantaneous rate of change of \(b_i \) as we change \(a_j \).

 - If we change \(a_j \) slightly to \(a_j + \delta \),

 - Then (for small \(\delta \)), \(b_i \) changes to approximately \(b_i + \frac{\partial b_i}{\partial a_j} \delta \).
Partial Derivatives of an Affine Function

- Define the affine function \(g(x) = Mx + c \), for \(M \in \mathbb{R}^{n \times p} \) and \(c \in \mathbb{R} \).

- If we let \(b = g(a) \), then what is \(b_i \)?

- \(b_i \) depends on the \(i \)th row of \(M \):
 \[
 b_i = \sum_{k=1}^{p} M_{ik} a_k + c_i
 \]
 and
 \[
 \frac{\partial b_i}{\partial a_j} = M_{ij}.
 \]

- So for an affine mapping, entries of matrix \(M \) directly tell us the rates of change.
Chain Rule (in terms of partial derivatives)

- $g : \mathbb{R}^p \to \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^m$. Let $b = g(a)$. Let $c = f(b)$.

- Change in a_j may change each of b_1, \ldots, b_n.
- Changes in b_1, \ldots, b_n may each effect c_i.
- Chain rule tells us that, to first order, the net change in c_i is the sum of the changes induced along each path from a_j to c_i.

- Chain rule says that

\[
\frac{\partial c_i}{\partial a_j} = \sum_{k=1}^{n} \frac{\partial c_i}{\partial b_k} \frac{\partial b_k}{\partial a_j}.
\]
Example: Least Squares Regression
Review: Linear least squares

- Hypothesis space \(\{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \} \).
- Data set \((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R} \).
- Define \(\ell_i(w, b) = \left((w^T x_i + b) - y_i \right)^2 \).
- In SGD, in each round we’d choose a random index \(i \in 1, \ldots, n \) and take a gradient step
 \[
 w_j \leftarrow w_j - \eta \frac{\partial \ell_i(w, b)}{\partial w_j}, \text{ for } j = 1, \ldots, d \\
 b \leftarrow b - \eta \frac{\partial \ell_i(w, b)}{\partial b},
 \]
 for some step size \(\eta > 0 \).
- Let’s revisit how to calculate these partial derivatives...
Computation Graph and Intermediate Variables

- For a generic training point \((x, y)\), denote the loss by

\[
\ell(w, b) = [(w^T x + b) - y]^2.
\]

- Let’s break this down into some intermediate computations:

\[
\begin{align*}
\text{(prediction)} \quad \hat{y} & = \sum_{j=1}^{d} w_j x_j + b \\
\text{(residual)} \quad r & = y - \hat{y} \\
\text{(loss)} \quad \ell & = r^2
\end{align*}
\]
We'll work our way from graph output ℓ back to the parameters w and b:

\[
\frac{\partial \ell}{\partial r} = 2r \\
\frac{\partial \ell}{\partial \hat{y}} = \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}} = (2r)(-1) = -2r \\
\frac{\partial \ell}{\partial b} = \frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = (-2r)(1) = -2r \\
\frac{\partial \ell}{\partial w_j} = \frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_j} = (-2r)x_j = -2rx_j
\]
Example: Ridge Regression
For training point \((x, y)\), the \(\ell_2\)-regularized objective function is

\[
J(w, b) = \left[(w^T x + b) - y\right]^2 + \lambda w^T w.
\]

Let’s break this down into some intermediate computations:

- (prediction) \(\hat{y} = \sum_{j=1}^{d} w_j x_j + b\)
- (residual) \(r = y - \hat{y}\)
- (loss) \(\ell = r^2\)
- (regularization) \(R = \lambda w^T w\)
- (objective) \(J = \ell + R\)
We’ll work our way from graph output \(\ell \) back to the parameters \(w \) and \(b \):

\[
\frac{\partial J}{\partial \ell} = \frac{\partial J}{\partial R} = 1
\]

\[
\frac{\partial J}{\partial \hat{y}} = \frac{\partial J}{\partial \ell} \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}} = (1)(2r)(-1) = -2r
\]

\[
\frac{\partial J}{\partial b} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = (-2r)(1) = -2r
\]

\[
\frac{\partial J}{\partial w_j} = ?
\]
Handling Nodes with Multiple Children

- Consider $a \mapsto J = h(f(a), g(a))$.

- It’s helpful to think about having two independent copies of a, call them $a^{(1)}$ and $a^{(2)}$...
Handling Nodes with Multiple Children

\[
\frac{\partial J}{\partial a} = \frac{\partial J}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial a} + \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial a}
\]

- Derivative w.r.t. \(a \) is the sum of derivatives w.r.t. each copy of \(a \).
Partial Derivatives on Computation Graph

- We'll work our way from graph output ℓ back to the parameters w and b:

$$
\frac{\partial J}{\partial \hat{y}} = \frac{\partial J}{\partial \ell} \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}} = (1)(2r)(-1) = -2r
$$

$$
\frac{\partial J}{\partial w_j}^{(1)} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_j}^{(1)} = \frac{\partial J}{\partial \hat{y}} \cdot 2\lambda w_j^{(1)} = (1)(2\lambda w_j^{(1)})
$$

$$
\frac{\partial J}{\partial w_j} = \frac{\partial J}{\partial w_j}^{(1)} + \frac{\partial J}{\partial w_j}^{(2)}
$$
General Backpropagation
Backpropagation is a specific way to evaluate the partial derivatives of a computation graph output J w.r.t. the inputs and outputs of all nodes.

Backpropagation works node-by-node.

To run a “backward” step at a node f, we assume

- we’ve already run “backward” for all of f’s children.

Backward at node $f : a \mapsto b$ returns

- Partial of objective value J w.r.t. f’s output: $\frac{\partial J}{\partial b}$
- Partial of objective value J w.r.t f’s input: $\frac{\partial J}{\partial a}$
Backpropagation: Simple Case

- Simple case: all nodes take a single scalar as input and have a single scalar output.

- Backprop for node f:
 - **Input:** $\frac{\partial J}{\partial b^{(1)}}, \ldots, \frac{\partial J}{\partial b^{(N)}}$
 (Partials w.r.t. inputs to all children)
 - **Output:**
 \[
 \frac{\partial J}{\partial b} = \sum_{k=1}^{N} \frac{\partial J}{\partial b^{(k)}}
 \]
 \[
 \frac{\partial J}{\partial a} = \frac{\partial J}{\partial b} \frac{\partial b}{\partial a}
 \]
More generally, consider $f : \mathbb{R}^d \rightarrow \mathbb{R}^n$.

Input: $\frac{\partial J}{\partial b_j^{(i)}}$, $i = 1, \ldots, N$, $j = 1, \ldots, n$

Output:

\[
\frac{\partial J}{\partial b_j} = \sum_{k=1}^{N} \frac{\partial J}{\partial b_j^{(k)}}
\]
\[
\frac{\partial J}{\partial a_i} = \sum_{j=1}^{n} \frac{\partial J}{\partial b_j} \frac{\partial b_j}{\partial a_i}
\]
Running Backpropagation

- If we run “backward” on every node in our graph,
 - we’ll have the gradients of J w.r.t. all our parameters.
- To run backward on a particular node,
 - we assumed we already ran it on all children.
- A topological sort of the nodes in a directed [acyclic] graph
 - is an ordering which every node appears before its children.
- So we’ll evaluate backward on nodes in a reverse topological ordering.