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Introduction
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Learning with Back-Propagation

@ Back-propagation is an algorithm for computing the gradient
@ With lots of chain rule, you could also work out the gradient by hand.
@ Back-propagation is

e a clean way to organize the computation of the gradient
e an efficient way to compute the gradient
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Partial Derivatives and the Chain Rule J
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Partial Derivatives

o Consider a function g: RP — R".

@ Typical computation graph: @ Broken out into components:

a b a,
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Partial Derivatives

o Consider a function g: RP — R".

al b; o Partial derivative g;{ is the instantaneous
az b rate of change of b; as we change a;.
: :2’ o If we change a; slightly to a; +3,
a lf) @ Then (.for small 6)'5);- changes to
L_F_I ‘ n ’ approximately b; + aaj’,é.
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Partial Derivatives of an Affine Function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

A b, o If we let b= g(a), then what is b;?
%z ‘DZ, @ b; depends on the ith row of M:
\. bl‘.: i
a n b,‘ = /\/l,-kak—i—c,-
L_ilf LJ " k=1
ae LeR o
0b;
iy
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@ So for an an affine mapping, entries of
matrix M directly tell us the rates of
change.
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Chain Rule (in terms of partial derivatives)

@ g:RP—-R"and f:R" — R™. Let b=g(a). Let c =f(b).

b, .
@ Chain rule says that

a A <
~ e {06 on
. k=1

Cm aaj abk aaj ’
a
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(1¥5 KP bel’ ek
e Change in aj may change each of by, ..., b,.
@ Changes in by,..., b, may each effect c;.

@ Chain rule tells us that, to first order, the net change in ¢; is
o the sum of the changes induced along each path from a; to ;.
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Example: Least Squares Regression J
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Review: Linear least squares

@ Hypothesis space {f(x) =wlx+blweRd be R}.
e Data set (x1,y1),.... (X yn) € RY xR.

@ Define )
¢i(w,b) = [y,-— (WTX,-—i—b)] )
@ In SGD, in each round we'd choose a random index i € 1,...,n and take a gradient step
0l;(w, b) ,
w, +— wj—n—————— forj=1,..., d
J J aVVJ
0l;(w, b)
b b—m—
T

for some step size n > 0.

@ Let's revisit how to calculate these partial derivatives...
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Computation Graph and Intermediate Variables

@ For a generic training point (x, y), denote the loss by
Lw,b) = [y— (WTX+b>]2

o Let's break this down into some intermediate computations:
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

ol

w or
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Example: Ridge Regression J
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Ridge Regression: Computation Graph and Intermediate Variables

e For training point (x,y), the {>-regularized objective function is
J(w,b)=[y— (WTx+b)]2+7\WTW.

@ Let's break this down into some intermediate computations:

(prediction) y =

(residual) r =
(loss) ¢ = r Y
(regularization) R = AwTw Trainir\a Exarv\rle

(objective) J = (+R
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Partial Derivatives on Computation Graph

o We'll work our way from graph output J back to the parameters w and b:

(Par Ame’fers
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Handling Nodes with Multiple Children

e Consider a+ J = h(f(a),g(a)).

5 O=x
TS k

e It's helpful to think about having two independent copies of a, call them a(l) and a(?)...
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Handling Nodes with Multiple Children

)
D
oJ oJ 02t 9aJ 0a@
A o ﬁj — = 2 2

) 22 2a@ 092 3.2 0a
/K VY,
& = 220 3202

@ Derivative w.r.t. ais the sum of derivatives w.r.t. each copy of a.
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

Tmmina Ex?w\flg
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General Backpropagation J
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Backpropagation: Overview

@ Backpropagation is a specific way to evaluate the partial derivatives of a computation
graph output J w.r.t. the inputs and outputs of all nodes.
@ Backpropagation works node-by-node.
@ To run a “backward” step at a node f, we assume
e we've already run “backward” for all of f's children.
e Backward at node f:a+—> b returns
o Partial of objective value J w.r.t. f's output: %

o Partial of objective value J w.r.t f's input: %
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Backpropagation: Simple Case

@ Simple case: all nodes take a single scalar as input and have a single scalar output.

e Backprop for node f:

. _oJ oJ
e Input: YRR 35N

(Partials w.r.t. inputs to all children)

o Output:
oJ Noay
b Z:abMJ
k=1
dJ 0J0b
0a  0bda
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Backpropagation (General case)

@ More generally, consider f : RY — R".

o Input: % i=1,...,N,j=1,....n
J

o Output:

0 T o i 3J
db; I
dJ = 9J db;
aa,- a ZaT)jaa,-
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Running Backpropagation

@ If we run “backward” on every node in our graph,
o we'll have the gradients of J w.r.t. all our parameters.

@ To run backward on a particular node,
e we assumed we already ran it on all children.

e A topological sort of the nodes in a directed [acyclic] graph
e is an ordering which every node appears before its children.

@ So we'll evaluate backward on nodes in a reverse topological ordering.
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