Machine Learning and Computational Statistics (DS-GA 1003)

David Rosenberg

New York University

January 24, 2017
Logistics

- Class webpage: https://davidrosenberg.github.io/ml2017
 - Syllabus on the website
- Piazza: https://piazza.com/nyu/spring2017/dsga1003
 - All class announcements via Piazza
 - Ask all questions on Piazza
- Class Times
 - Tuesdays “Lecture”: 5:20 - 7pm (GSACL C95)
 - Wednesdays “Lab”: 8:35 - 9:25pm (GSACL C95)
 - (Both are required.)
Course Staff

- **TAs:**
 - Brett Bernstein (3rd year PhD Student in Math at Courant)
 - Vlad Kobzar (grad student in Math and ML at Courant)

- **Graders:**
 - Ben Jakubowski (Head Grader)
 - Hao Liu
 - Yuhao Zhao
 - Xinyi Gong
 - Lanyu Shang
 - Prithvi Krishna “PK” Gattamaneni

- **Project Advisers:**
 - Kurt Miller, Brian d’Alessandro, Bonnie Ray, Daniel Chen, and more TBD.
Evaluation

- About 8 homeworks (35%)
- Two tests (45%)
 - One-Hour Test (15%) in Week 6
 - Two-Hour Test (30%) in Week 12
- Project (20%)
 - Poster session during lecture time in week after classes (Week 15)
- Extra Credit Opportunities
 - Optional homework problems
 - Significant contributions to Piazza and in-class discussions
 - Primarily used to boost a borderline grade
 - At most, increases final grade by half a letter (e.g. B+ to A-)
Lab Sessions

- Some led by TA Brett Bernstein, some by me
- Most will be lecture format
- We’ll have one test during lab session (and one during lecture)
- Meetings with project advisors
Homework (45%)

- First assignment out Wednesday – Due week from Thursday 10pm
- Submit with Gradescope (details on website)
- Homworks should be submitted as a PDF document.
- Late homework: Accepted up to 48 hours late with 20% penalty
- Collaboration is fine, but
 - Write up solutions and code on your own
 - List names of who you talked to about each problem
Projects (20%)

- Find some new data or new approach to old data
- See notes on website.
- Logistics:
 - 3 students per group
 - First meeting with advisors (March 8)
 - Project proposal due after Spring Break (March 23)
Prerequisites

- DS-GA 1001: Introduction to Data Science
- DS-GA 1002: Statistical and Mathematical Methods
- Math
 - Multivariate Calculus
 - Linear Algebra
 - Probability Theory
 - Statistics
- Python programming (numpy)
High Level Goals of the Class

- Learn fundamental building blocks of machine learning
- Goal is to start seeing
 - fancy new method A “is just” familiar thing B + familiar thing C + tweak D
 - SVM “is just” ERM with hinge loss with ℓ_2 regularization
 - Pegasos “is just” SVM with SGD with a particular step size rule
 - Random forest “is just” bagging with trees, with an interesting tweak on choosing splitting variables
General Philosophy

- Mastery vs Performance
 - understanding vs just getting it done
- Don’t confuse “kind of understanding” with “actual understanding”
Questions?

- What are you looking to get out of the course?
- Questions for me?