Excess Risk Decomposition

David Rosenberg

New York University

January 30, 2017
Review: Statistical Learning Theory
Statistical Learning Theory Framework

The Spaces

- \mathcal{X}: input space
- \mathcal{Y}: output space
- \mathcal{A}: action space

Decision Function

A **decision function** produces an action $a \in \mathcal{A}$ for any input $x \in \mathcal{X}$:

$$f : \mathcal{X} \rightarrow \mathcal{A}$$
$$x \mapsto f(x)$$

Loss Function

A **loss function** evaluates an action in the context of the output y.

$$\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$$
$$(a, y) \mapsto \ell(a, y)$$
The Gold Standard: Bayes Decision Function

Definition
The expected loss or “risk” of a decision function $f : \mathcal{X} \to \mathcal{A}$ is

$$R(f) = \mathbb{E}_\ell(f(x), y),$$

where the expectation taken is over $(x, y) \sim P_{X \times Y}$.

Definition
A Bayes decision function $f^* : \mathcal{X} \to \mathcal{A}$ is a function that achieves the minimal risk among all possible functions:

$$R(f^*) = \inf_f \mathbb{E}_\ell(f(x), y).$$

But risk function cannot be computed because we don’t know $P_{X \times Y}$.
Empirical Risk Minimization

- Let $D_n = ((x_1, y_1), \ldots, (x_n, y_n))$ be drawn i.i.d. from $P_{X \times Y}$.

Definition

The **empirical risk** of $f : X \rightarrow A$ with respect to D_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

- Minimizing empirical risk over all functions leads to overfitting.
Constrain to a Hypothesis Space

- Hypothesis space \mathcal{F}, a set of functions mapping $\mathcal{X} \to \mathcal{A}$
 - Example hypothesis spaces?

- **Empirical risk minimizer (ERM) in \mathcal{F}** is
 \[
 \hat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).
 \]

- **Risk minimizer in \mathcal{F}** is
 \[
 f_\mathcal{F} = \arg\min_{f \in \mathcal{F}} \mathbb{E}\ell(f(x), y).
 \]
Excess Risk Decomposition

Error Decomposition

\[f^* = \arg\min_f \mathbb{E} \ell(f(X), Y) \]

\[f_{\mathcal{F}} = \arg\min_{f \in \mathcal{F}} \mathbb{E} \ell(f(X), Y) \]

\[\hat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \]

- **Approximation Error** (of \(\mathcal{F} \)) = \(R(f_{\mathcal{F}}) - R(f^*) \)
- **Estimation error** (of \(\hat{f}_n \) in \(\mathcal{F} \)) = \(R(\hat{f}_n) - R(f_{\mathcal{F}}) \)

Excess Risk

Definition

The *excess risk* compares the risk of f to the Bayes optimal f^*:

$$\text{Excess Risk}(f) = R(f) - R(f^*)$$

- Can excess risk ever be negative?
The excess risk of the ERM \hat{f}_n can be decomposed:

$$\text{Excess Risk}(\hat{f}_n) = R(\hat{f}_n) - R(f^*)$$

$$= R(\hat{f}_n) - R(f_F) + R(f_F) - R(f^*)$$

- estimation error
- approximation error
Approximation error $R(f_F) - R(f^*)$ is
- a property of the class F
- the penalty for restricting to F rather than all possible functions

Bigger F mean smaller approximation error.

Concept check: Is approximation error a random or non-random variable?
Estimation Error

Estimation error $R(\hat{f}_n) - R(f_\mathcal{F})$

- is the performance hit for choosing f using finite training data
- is the performance hit for using empirical risk rather than true risk

With smaller \mathcal{F} we expect smaller estimation error.

Under typical conditions: “With infinite training data, estimation error goes to zero.”

- [Infinite training data solves the *statistical* problem, which is not knowing the true risk.]

Concept check: Is estimation error a random or non-random variable?
ERM Overview

- Given a loss function $\ell : A \times Y \rightarrow R$.
- Choose hypothesis space \mathcal{F}.
- Use an optimization method to find ERM $\hat{f}_n \in \mathcal{F}$:

$$\hat{f}_n = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

- Data scientist’s job:
 - choose \mathcal{F} to balance between approximation and estimation error.
 - as we get more training data, use a bigger \mathcal{F}
ERM in Practice

- We’ve been cheating a bit by writing “argmin”.
- In practice, we need a method to find $\hat{f}_n \in \mathcal{F}$.
- For nice choices of loss functions and classes \mathcal{F}, the algorithmic problem can be solved to any desired accuracy
 - But takes time – is it worth it?
- For some hypothesis spaces (e.g. neural networks), we don’t know how to find $\hat{f}_n \in \mathcal{F}$.
In practice, we don’t find the ERM $\hat{f}_n \in \mathcal{F}$.

We find $\tilde{f}_n \in \mathcal{F}$ that we hope is good enough.

Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

$\text{Optimization Error} = R(\tilde{f}_n) - R(\hat{f}_n)$.

Can optimization error be negative? Yes!

But

$\hat{R}(\tilde{f}_n) - \hat{R}(\hat{f}(n)) \geq 0$.
Error Decomposition in Practice

Excess risk decomposition for function \tilde{f}_n returned by algorithm:

$$\text{Excess Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= R(\tilde{f}_n) - R(\hat{f}_n) + R(\hat{f}_n) - R(f_{\mathcal{F}}) + R(f_{\mathcal{F}}) - R(f^*)$$

- optimization error
- estimation error
- approximation error
Excess Risk Decomposition: Example
A Simple Classification Problem

\[y = \{ \text{blue, orange} \} \]

\[P_{x} = \text{Uniform}([0, 1]^2) \]

\[P(\text{orange} \mid x_1 > x_2) = 0.9 \]

\[P(\text{orange} \mid x_1 < x_2) = 0.1 \]

Bayes Error Rate = 0.1
Consider a binary tree on \((X_1, X_2) \mid X_1, X_2 \in \mathbb{R}\)
Hypothesis Space: Decision Tree

- \(\mathcal{F} = \left\{ \text{all decision tree classifiers on } [0, 1]^2 \right\} \)

- \(\mathcal{F}_d = \left\{ \text{all decision tree classifiers on } [0, 1]^2 \text{ with DEPTH } \leq d \right\} \)

- We’ll consider

 \[\mathcal{F}_2 \subset \mathcal{F}_3 \subset \mathcal{F}_4 \cdots \subset \mathcal{F}_{15} \]

- Bayes error rate = 0.1
Theoretical Best in \mathcal{F}_2

- Risk Minimizer in \mathcal{F}_2 (e.g. assuming **infinite training data**); Risk = $P(\text{error}) = 0.2$
- Approximation Error = $0.2 - 0.1 = 0.1$
Theoretical Best in \mathcal{F}_3

- Risk Minimizer in \mathcal{F}_3 (e.g. assuming infinite training data); Risk = $P(\text{error}) = 0.15$
- Approximation Error = $0.15 - 0.1 = 0.05$
Theoretical Best in \mathcal{F}_4

- Risk Minimizer (e.g. assuming infinite training data); Risk $= P(\text{error}) = 0.125$
- Approximation Error $= 0.125 - 0.1 = 0.025$
Decision Tree in \mathcal{F}_3 Estimated From Sample ($n = 1024$)

\[
R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.176 \pm 0.004
\]

\[
\text{Estimation Error} + \text{Optimization Error} = 0.176 \pm 0.004 - 0.150 = 0.026 \pm 0.004
\]
\[R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.144 \pm 0.05 \]

\[\text{Estimation Error + Optimization Error} = \left(0.144 \pm 0.05 \right) - \left(0.125 \right) = 0.019 \pm 0.005 \]
\[R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.148 \pm 0.007 \]

Estimation Error + Optimization Error = \[\left(R(\tilde{f}) \right) - \left(\min_{f \in F_6} R(f) \right) = 0.148 \pm 0.007 - 0.106 = 0.042 \pm 0.007 \]
Decision Tree in \mathcal{F}_8 Estimated From Sample ($n = 1024$)

\[R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.162 \pm 0.009 \]

Estimation Error + Optimization Error = \[0.162 \pm 0.009 - 0.102 = 0.061 \pm 0.009 \]
Decision Tree in \mathcal{F}_8 Estimated From Sample ($n = 2048$)

$$R(\tilde{f}) = \mathbb{P}({\text{error}}) = 0.146 \pm 0.06$$

Estimation Error + Optimization Error = \underbrace{0.146 \pm 0.06}_{R(\tilde{f})} - \underbrace{0.102}_{\min_{f \in \mathcal{F}_3} R(f)} = 0.045 \pm 0.006$$
Decision Tree in \mathcal{F}_8 Estimated From Sample ($n = 8192$)

\[
R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.121 \pm 0.002
\]

\[
\text{Estimation Error + Optimization Error} = 0.121 \pm 0.002 - 0.102 = 0.019 \pm 0.002
\]
Risk Summary

Why do some curves have confidence bands and others not?
Excess Risk Decomposition

Why do some curves have confidence bands and others not?