Introduction to Kernel Methods

David Rosenberg

New York University

February 21, 2017
Setup and Motivation
The Input Space \mathcal{X}

- Our general learning theory setup: no assumptions about \mathcal{X}
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we’ve developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
 - Perceptrons
- Our hypothesis space for these was all affine functions on \mathbb{R}^d:
 \[\mathcal{H} = \{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \} . \]
- What if we want to do prediction on inputs not natively in \mathbb{R}^d?
Feature Extraction

Definition
Mapping an input from \mathcal{X} to a vector in \mathbb{R}^d is called feature extraction or featurization.

- e.g. Quadratic feature map: $\mathcal{X} = \mathbb{R}^d$

$$\phi(x) = (x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_ix_j, \ldots, \sqrt{2}x_{d-1}x_d)^T.$$
Linear Models with Explicit Feature Map

- Rather than take $X = \mathbb{R}^d$, let X be its own thing:
- Input space: X
- Introduce feature map $\psi : X \rightarrow \mathbb{R}^d$
- The feature map maps into the feature space \mathbb{R}^d.
- Hypothesis space of affine functions on feature space:

$$\mathcal{H} = \{ x \mapsto w^T \psi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$$
To get expressive hypothesis spaces using linear models,
- need high-dimensional feature spaces
- (What do we mean by expressive?)

Very large feature spaces have two problems:
1. Overfitting
2. Memory and computational costs

Overfitting we handle with regularization.

Kernel methods can (sometimes) help with memory and computational costs.
Some Methods Can Be “Kernelized”

Definition
A method is **kernelized** if inputs only appear inside inner products: $\langle \psi(x), \psi(y) \rangle$ for $x, y \in \mathcal{X}$.

- The **kernel function** corresponding to ψ and inner product $\langle \cdot, \cdot \rangle$ is
 $$k(x, y) = \langle \psi(x), \psi(y) \rangle.$$

- Why introduce this new notation $k(x, y)$?
- Turns out, we can often evaluate $k(x, y)$ directly,
 - without explicitly computing $\psi(x)$ and $\psi(y)$.
- For large feature spaces, can be much faster.
Kernel Evaluation Can Be Fast

Example

Quadratic feature map

\[\phi(x) = (x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_ix_j, \ldots \sqrt{2}x_{d-1}x_d)^T \]

has dimension \(O(d^2) \), but

\[k(w, x) = \langle \phi(w), \phi(x) \rangle = \langle w, x \rangle + \langle w, x \rangle^2 \]

- Naively explicit computation of \(k(w, x) \): \(O(d^2) \)
- Implicit computation of \(k(w, x) \): \(O(d) \)
Kernels as Similarity Scores

- Can think of the kernel function as a similarity score.
- But this is not precise.
- There are many ways to design a similarity score.
 - A kernel function is special because it’s an inner product.
 - Has many mathematical benefits.
What’s the Benefit of Kernelization?

1. Computational (e.g. when feature space dimension d larger than sample size n).
3. Allows thinking in terms of “similarity” rather than features.
Example: SVM
Recall the SVM dual optimization problem

\[
\sup_{\alpha} \alpha - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i
\]

s.t. \[\sum_{i=1}^{n} \alpha_i y_i = 0\]

\[\alpha_i \in [0, \frac{C}{n}] \quad i = 1, \ldots, n.\]

Notice: \(x\)'s only show up as inner products with other \(x\)'s.

Can replace \(x_j^T x_i\) by an arbitrary kernel \(k(x_j, x_i)\).

What kernel are we currently using?
The Kernel Matrix (or the Gram Matrix)

Definition

For a set of \(\{x_1, \ldots, x_n\} \) and an inner product \(\langle \cdot, \cdot \rangle \) on the set, the **kernel matrix** or the **Gram matrix** is defined as

\[
K = \begin{pmatrix}
\langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\
\vdots & \ddots & \vdots \\
\langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle
\end{pmatrix}
\]

Then for the standard Euclidean inner product \(\langle x_i, x_j \rangle = x_i^T x_j \), we have

\[
K = XX^T
\]
SVM Dual with Kernel Matrix

\[
\begin{align*}
\sup_{\alpha} & \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j K_{ji} \\
\text{s.t.} & \quad \sum_{i=1}^{n} \alpha_i y_i = 0 \\
& \quad \alpha_i \in \left[0, \frac{c}{n}\right] \quad i = 1, \ldots, n.
\end{align*}
\]

- Once our algorithm works with kernel matrices, we can change kernel just by changing the matrix.
- Size of matrix: \(n \times n\), where \(n\) is the number of data points.
- Recall with ridge regression, we worked with \(X^T X\), which is \(d \times d\), where \(d\) is feature space dimension.
Some Kernels
Linear Kernel

- Input space: $\mathcal{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^d$, with standard inner product
- Feature map
 \[\psi(x) = x. \]
- Kernel:
 \[k(w, x) = w^T x \]
Quadratic Kernel in \mathbb{R}^2

- **Input space:** $\mathcal{X} = \mathbb{R}^2$
- **Feature space:** $\mathcal{H} = \mathbb{R}^5$
- **Feature map:**
 \[
 \psi : (x_1, x_2) \mapsto (x_1, x_2, x_1^2, x_2^2, \sqrt{2}x_1 x_2)
 \]
- **Gives us ability to represent conic section boundaries.**
- **Define kernel as inner product in feature space:**
 \[
 k(w, x) = \langle \psi(w), \psi(x) \rangle \\
 = w_1 x_1 + w_2 x_2 + w_1^2 x_1^2 + w_2^2 x_2^2 + 2w_1 w_2 x_1 x_2 \\
 = w_1 x_1 + w_2 x_2 + (w_1 x_1)^2 + (w_2 x_2)^2 + 2(w_1 x_1)(w_2 x_2) \\
 = \langle w, x \rangle + \langle w, x \rangle^2
 \]

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.

David Rosenberg (New York University) DS-GA 1003 February 21, 2017 17 / 22
Quadratic Kernel in \mathbb{R}^d

- Input space $\mathcal{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^D$, where $D = d + \binom{d}{2} \approx d^2/2$.
- Feature map:

$$
\phi(x) = (x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_ix_j, \ldots \sqrt{2}x_{d-1}x_d)^T
$$

- Still have

$$
k(w, x) = \langle \phi(w), \phi(x) \rangle = \langle x, y \rangle + \langle x, y \rangle^2
$$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: $O(d)$.

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.

David Rosenberg (New York University)
Some Kernels

Polynomial Kernel in \mathbb{R}^d

- Input space $\mathcal{X} = \mathbb{R}^d$
- Kernel function:

$$k(w, x) = (1 + \langle w, x \rangle)^M$$

- Corresponds to a feature map with all terms up to degree M.
- For any M, computing the kernel has same computational cost.
- Cost of explicit inner product computation grows rapidly in M.
Radial Basis Function (RBF) / Gaussian Kernel

- Input space $\mathcal{X} = \mathbb{R}^d$

 $$k(w, x) = \exp \left(-\frac{\|w - x\|^2}{2\sigma^2} \right),$$

 where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?

- Why “radial”?

- Have we departed from our “inner product of feature vector” recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector

- Probably the most common nonlinear kernel.
Recap

1. Given a kernelized ML algorithm.
2. Can swap out the inner product for a new kernel function.
3. New kernel may correspond to a high dimensional feature space.
4. Once kernel matrix is computed, computational cost depends on number of data points, rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the **kernel trick**.