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Abstract

Boyd and Vandenberghe’s Convex Optimization book is very well-written and a pleasure to
read. The only potential problem is that, if you read it sequentially, you have to go through
almost 300 pages to get through duality theory. It turns out that a well-chosen 10 pages are
enough for a self-contained introduction to the topic. Most of the text here is copied essentially
verbatim from the original.

1 Notation

• Use notation f : Rp → Rq to mean that f maps from some subset of Rp, namely
dom f ⊂ Rp, where dom f stands for the domain of the function f

• R are the real numbers

• R+ are nonnegative reals

• R++ are positive reals

• a � b for a, b ∈ Rd means component-wise inequality – i.e. ai ≥ bi for i ∈ {1, . . . , d}

2 Affine and Convex Sets (BV 2.1)

2.1 Affine Sets

Intuitively, an affine set is any point, line, plane, or hyperplane. But let’s make this
more precise.

Definition 1. A set C ⊆ Rn is affine if the line through any two distinct points in C
lies in C. That is, if for any x1, x2 ∈ C and θ ∈ R, we have θx1 + (1− θ)x2 ∈ C.

Recall that a subspace is a subset of a vector space that is closed under sums and
scalar multiplication. If C is an affine set and x0 ∈ C, then the set V = C − x0 =
{x− x0 | x ∈ C} is a subspace. Thus, we can also write an affine set as C = V + x0 =
{v + x0 | v ∈ V }, i.e. as a subspace plus an offset. The subspace V associated with the
affine set C does not depend on the choice of x0 ∈ C. Thus we can make the following
definition:

Definition 2. The dimension of an affine set C is the dimension of the subspace
V = C − x0, where x0 is any element of C.
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We note that the solution set of a system of linear equations is an affine set, and
every affine set can be expressed as the solution of a system of linear equations [BV
Example 2.1, p. 22].

Definition 3. A hyperplane in Rn is a a set of the form

{x|aTx = b},

for a ∈ Rn, a 6= 0, b ∈ R, and where a is the normal vector to the hyperplane.

Note that a hyperplane in Rn is an affine set of dimension n− 1.

2.2 Convex Sets (BV 2.1.4)

Definition 4. A set C is convex if the line segment between any two points in C lies in
C. That is, if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1 we have

θx1 + (1− θ)x2 ∈ C.

Every affine set is also convex.

2.3 Spans and Hulls

Given a set of points x1, . . . xk ∈ Rn, there are various types of linear combinations that
we can take:

• A linear combination is a point of the form θ1x1+ · · ·+θkxk, with no constraints
on θi’s. The span of x1, . . . , xk is the set of all linear combinations of x1, . . . , xk.

• An affine combination is a point of the form θ1x1+· · ·+θkxk, where θ1+· · ·+θk =
1. The affine hull of x1, . . . , xk, denoted aff (x1, . . . , xk), is the set of all affine
combinations of x1, . . . , xk.

• A convex combination is a point of the form θ1x1+· · ·+θkxk, where θ1+· · ·+θk =
1 and θi ≥ 0 for all i. The convex hull of x1, . . . , xk is the set of all convex
combinations of x1, . . . , xk.
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3 Convex Functions

3.1 Definitions (BV 3.1, p. 67)

Definition 5. A function f : Rn → R is convex if dom f is a convex set and if for all
x, y ∈ dom f , and 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

A function f is concave if −f is convex.

Geometrically, a function is convex if the line segment connecting any two points on
the graph of f lies above the graph:

Definition 6. A function f is strictly convex if when we additionally restrict x 6= y
and 0 < θ < 1, then we get strict inequality:

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y).

Definition 7. A function f is strongly convex if ∃µ > 0 such that

x 7→ f(x)− µ‖x‖2

is convex. The largest possible µ is called the strong convexity constant.
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3.1.1 Consequences for Optimization

convex: if there is a local minimum, then it is a global minimum

strictly convex: if there is a local minimum, then it is the unique global minimum

strongly convex: there exists a unique global minimum

3.1.2 First-order conditions (BV 3.1.3)

The following characterization of convex functions is possibly “obvious from the picture”,
but we highlight it here because later it forms the basis for the definition of the “subgra-
dient”, which generalizes the gradient to nondifferentiable functions.

Suppose f : Rn → R is differentiable (i.e. dom f is open and ∇f exists at each
point indom f). Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x)

holds for all x, y ∈ dom f . In other words, for a convex differentiable function, the
linear approximation to f at x is a global underestimator of f :

The inequality shows that from local information about a convex function (i.e. its
value and derivative at a point) we can derive global information (i.e. a global under-
estimator of it). This is perhaps the most important property of convex func-
tions. For example, the inequality shows that if ∇f(x) = 0, then for all y ∈ dom f ,
f(y) ≥ f(x), i.e. x is a global minimizer of f .

3.1.3 Examples of Convex Functions (BV 3.1.5)

Functions mapping from R:

• x 7→ eax is convex on R for all a ∈ R

• x 7→ xa is convex on R++ when a ≥ 1 or a ≤ 0 and concave for 0 ≤ a ≤ 1

• |x|p for p ≥ 1 is convex on R

• log x is concave on R++

• x log x (either on R++ or on R+ if we define 0 log 0 = 0) is convex

Functions mapping from Rn:
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• Every norm on Rn is convex

• Max: (x1, . . . , xn) 7→ max {x1 . . . , xn} is convex on Rn

• Log-Sum-Exp1: (x1, . . . , xn) 7→ log (ex1 + · · ·+ exn) is convex on Rn.

3.2 Operations the preserve convexity (Section 3.2, p. 79)

3.2.1 Nonnegative weighted sums

If f1, . . . , fm are convex and w1, . . . , wm ≥ 0, then f = w1f1 + · · · + wmfm is convex.
More generally, if f(x, y) is convex in x for each y ∈ A, and if w(y) ≥ 0 for each y ∈ A,
then the function

g(x) =

∫
A
w(y)f(x, y) dy

is convex in x (provided the integral exists).

3.2.2 Composition with an affine mapping

A function f : Rn → Rm is an affine function (or affine mapping) if it is a sum
of a linear function and a constant. That is, if it has the form f(x) = Ax + b, where
A ∈ Rm×n and b ∈ Rm.

Composition of a convex function with an affine function is convex. More precisely:
suppose f : Rn → R, A ∈ Rn×m and b ∈ Rn. Define g : Rm → R by

g(x) = f (Ax+ b) ,

with dom g = {x | Ax+ b ∈ dom f}. Then if f is convex, then so is g; if f is concave,
so is g. If f is strictly convex, and A has linearly independent columns, then g is also
strictly convex.

3.2.3 Simple Composition Rules

• If g is convex then exp g(x) is convex.

• If g is convex and nonnegative and p ≥ 1 then g(x)p is convex.

• If g is concave and positive then log g(x) is concave

• If g is concave and positive then 1/g(x) is convex.

1 This function can be interpreted as a differentiable (in fact, analytic) approximation to the max
function, since

max {x1, . . . , xn} ≤ log (ex1 + · · ·+ exn) ≤ max {x1, . . . , xn}+ log n.

Can you prove it? Hint: max(a, b) ≤ a+ b ≤ 2max(a, b).
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3.2.4 Maximum of convex functions is convex (BV Section 3.2.3, p. 80)

Note: Below we use this to prove that the Lagrangian dual function is concave.
If f1, . . . , fm : Rn → R are convex, then their pointwise maximum

f(x) = max {f1(x), . . . , fm(x)}
is also convex with domain dom f = dom f1 ∩ · · · ∩ dom fm.

This result extends to the supremum over arbitrary sets of functions (including un-
countably infinite sets).

4 Optimization Problems (BV Chapter 4)

4.1 General Optimization Problems (BV Section 4.1.1)

The standard form for an optimization problem is the following:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . p,

where x ∈ Rn are called the optimization variables. The function f0 : Rn → R
is the objective function (or cost function); the inequalities fi(x) ≤ 0 are called
inequality constraints and the corresponding functions fi : Rn → R are called the
inequality constraint functions. The equations hi(x) = 0 are called the equality
constraints and the functions hi : Rn → R are the equality constraint functions.
If there are no constraints (i.e. m = p = 0), we say the problem is unconstrained.

The set of points for which the objective and all constraint functions are defined,

D =
m⋂
i=0

dom fi ∩
p⋂
i=1

dom hi,

is called the domain of the optimization problem. A point x ∈ D is feasible if it
satisfies all the equality and inequality constraints. The set of all feasible points is called
the feasible set or the constraint set. If x is feasible and fi(x) = 0, then we say the
ith inequality constraint fi(x) ≤ 0 is active at x.

The optimal value p∗ of the problem is defined as

p∗ = inf {f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p} .
Note that if the problem is infeasible, p∗ =∞, since it is the inf of an empty set.

We say that x∗ is an optimal point (or is a solution to the problem) if x∗ is feasible
and f(x∗) = p∗. The set of optimal points is the optimal set.

We say that a feasible point x is locally optimal if there is an R > 0 such that x
solves the following optimization problem:

minimize f0(z)

subject to fi(z) ≤ 0, i = 1, . . . ,m

hi(z) = 0, i = 1, . . . p

‖z − x‖2 ≤ R

with optimization variable z. Roughly speaking, this means x minimizes f0 over nearby
points in the feasible set.
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4.2 Convex Optimization Problems (Section 4.2, p. 136)

4.2.1 Convex optimization problems in standard form (Section 4.2.1)

The standard form for a convex optimization problem is the following:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . p

where f0, . . . , fm are convex functions. Compared with the general standard form, the
convex problem has three additional requirements:

• the objective function must be convex

• the inequality constraint functions must be convex

• the equality constraints functions must be affine

We immediately note an important property: the feasible set of a convex optimization
problem is convex (see BV p. 137).

4.2.2 Local and global Optima (4.2.2, p. 138)

Fact 8. A fundamental property of convex optimization problems is that any locally
optimal point is also globally optimal.

5 Duality (BV Chapter 5)

5.1 The Lagrangian (BV Section 5.1.1)

We again consider the general optimization problem in standard form:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . p,

with variable x ∈ Rn. We assume its domain D =
⋂m
i=0 dom fi ∩

⋂p
i=1 dom hi is

nonempty and denote the optimal value by p∗. We do not assume the problem is convex.

Definition 9. The Lagrangian L : Rn ×Rm ×Rp → R for the general optimization
problem defined above is

L(x, λ, ν) = f0(x) +
m∑
I=1

λifi(x) +

p∑
i=1

νihi(x),

with dom L = D×Rm×Rp. We refer to the λi as the Lagrange multiplier associated
with the ith inequality constraint and νi as the Lagrange multiplier associated with the
ith equality constraint. The vectors λ and ν are called the dual variables or Lagrange
multiplier vectors.
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5.1.1 Max-min characterization of weak and strong duality (BV Section 5.4.1)

Note that

sup
λ�0,ν

L(x, λ, ν) = sup
λ�0,ν

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x),

)

=

{
f0(x) fi(x) ≤ 0 i = 1, . . . ,m and hi(x) = 0 i = 1, . . . p

∞ otherwise.

In words, when x is in the feasible set, we get back the objective function: supλ�0 L(x, λ) =
f0(x). Otherwise, we get ∞. Proof: Suppose x violates an inequality constraint, say
fi(x) > 0. Then supλ�0 L(x, λ) = ∞, which we can see by taking λj = 0 for j 6= i,
taking all νi = 0, and sending λi →∞. We can make a similar argument for an equality
constraint violation. If x is feasible, then fi(x) ≤ 0 and hi(x) = 0 for all i, and thus the
supremum is achieved by taking λ = 0, which yields supλ�0,ν L(x, λ) = f0(x).

It should now be clear that we can write the original optimization problem as

p∗ = inf
x

sup
λ�0,ν

L(x, λ, ν).

In this context, this optimization problem is called the primal problem. We get the
Lagrange dual problem by swapping the inf and the sup:

d∗ = sup
λ�0,ν

inf
x
L(x, λ, ν),

where d∗ is the optimal value of the Lagrange dual problem.

Theorem 10 (Weak max-min inequality, BV Exercise 5.24, p. 281). For any f :
Rn ×Rm → R, W ⊆ Rn, or Z ⊆ Rm, we have

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z).

Proof. For any w0 ∈ W and z0 ∈ Z, we clearly have

inf
w∈W

f(w, z0) ≤ sup
z∈Z

f(w0, z).

Since this is true for all w0 and z0, we must also have

sup
z0∈Z

inf
w∈W

f(w, z0) ≤ inf
w0∈W

sup
z∈Z

f(w0, z).

In the context of an optimization problem, the weak max-min inequality is called
weak duality, which always holds for any optimization problem (not just convex ):

p∗ = inf
x

sup
λ≥0,ν

[
f0(x) +

m∑
I=1

λifi(x) +

p∑
i=1

νihi(x)

]

≥ sup
λ≥0,ν

inf
x

[
f0(x) +

m∑
I=1

λifi(x) +

p∑
i=1

νihi(x)

]
= d∗

The gap p∗ − d∗ is called the duality gap. For convex optimization problems, we very
often have strong duality, which is when we have the equality: p∗ = d∗.
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5.1.2 The Lagrange Dual Function (BV Section 5.1.2 p. 216)

We define the Lagrange dual function (or just dual function) g : Rm ×Rp → R as
the minimum value of the Lagrangian over x: for λ ∈ Rm, ν ∈ Rp,

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
I=1

λifi(x) +

p∑
i=1

νihi(x)

)
.

This is the inner minimization problem of the Lagrange dual problem discussed above.
When the Lagrangian is unbounded below in x, the dual function takes on the value
−∞. The dual function is concave even when the optimization problem is not
convex, since the dual function is the pointwise infimum of a family of affine functions
of (λ, ν) (a different affine function for each x ∈ D).

5.1.3 The Lagrange Dual Problem

From weak duality, it is clear than for each pair (λ, ν) with λ ≥ 0, the Lagrange dual
function g(λ, ν) gives us a lower bound on p∗. A search for the best possible lower bound
is one motivation for the Lagrange dual problem, which now we can write as

maximize g(λ, ν)

subject to λ � 0.

In this context, a pair (λ, ν) is called dual feasible is λ � 0 and g(λ, ν) > −∞. We refer
to (λ∗, ν∗) as dual optimal or optimal Lagrange multipliers if they are optimal for
the Lagrange dual problem.

The Lagrange dual problem is as convex optimization problem, since the objective is
concave and the constraint is convex. This is the case whether or not the primal problem
is convex.

5.2 Strong duality and Slater’s constraint qualification (5.2.3,
p. 226)

For a convex optimization problem in standard form, we usually have strong duality, but
not always. The additional conditions needed are called constraint qualifications. To
state these conditions in their full generality, we need some new definitions. So we’ll
start with some consequences that are easier to state and use:

Corollary 11. For a convex optimization problem in standard form, if the domain2 D =⋂m
i=0 dom fi is open3, and there exists an x ∈ D such that Ax = b and fi(x) < 0 for i =

1, . . . ,m (such a point is called strictly feasible), then strong duality holds. Moreover,
if d∗ > −∞, then the dual optimum is attained – that is, there exists a dual feasible
(λ∗, ν∗) with g(λ∗, ν∗) = d∗ = p∗. If f1, . . . , fk are affine functions, it is sufficient to
replace the strict inequality constraints for f1, . . . , fk with inequality constraints fi(x) ≤ 0
for i = 1, . . . , k, while the other conditions remain the same.

2 Recall the domain of a function dom fi is the set where the function is defined, and so D is the set
where all the functions in the optimization problem are defined. In particular, D is NOT the feasible
set (though it contains the feasible set).

3 For example, Rd is an open set, and is the domain we encounter most often.
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Simplified version appropriate for SVM:

Corollary 12. For a convex optimization problem in standard form, if the domain of
f0 is open, all equality and inequality constraints are linear, and the problem is feasible
(i.e. there is some point in the domain that satisfies all the constraints), then we have
strong duality and, if d∗ > −∞, then the dual optimum is attained.

For a more general statement, let’s define the affine dimension of a set C as the
dimension of its affine hull. We define the relative interior of the set C, denoted
relint C, as the interior relative to aff C:

relint C = {x ∈ C | B(x, r) ∩ aff C ⊆ C for some r > 0} , .

where B(x, r) = {x | ‖y − x‖ ≤ r}, is the ball of radius r and center x in the norm ‖ · ‖.
Also, recall that for a convex optimization problem in standard form, the domain D is
the intersection of the domain of the objective and the inequality constraint functions:

D =
m⋂
i=0

dom fi.

Theorem 13. For a convex optimization problem, if there exists an x ∈ relint D such
that Ax = b and fi(x) < 0 for i = 1, . . . ,m (such a point is sometimes called strictly
feasible), then strong duality holds and, if d∗ > −∞, then the dual optimum is attained.
If f1, . . . , fk are affine functions, it is sufficient to replace the strict inequality constraints
for f1, . . . , fk with inequality constraints fi(x) ≤ 0 for i = 1, . . . , k, while the other
conditions remain the same.

5.3 Optimality Conditions (BV 5.5, p. 241)

5.3.1 Complementary slackness (BV 5.5.2, p. 242)

Suppose that the primal and dual optimal values are attained and equal (so, in particular,
strong duality holds, but we’re not assuming convexity). Let x∗ be a primal optimal and
(λ∗, ν∗) be a dual optimal point. This means that

f0(x
∗) = g(λ∗, ν∗)

= inf
x

(
f0(x) +

m∑
I=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

)

≤ f0(x
∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x
∗).

The first line states that the duality gap is zero, and the second line is the definition of
the dual function. The third line follows since the infimum of the Lagrangian over x is
less than or equal to its value at x = x∗. The last inequality follows from feasibility of
λ∗ and x∗ (meaning λ∗ � 0, fi(x∗) ≤ 0 and hi(x∗) = 0, for all i. Thus the inequalities
are actually equalities. We can draw two interesting conclusions:

1. Since the third line is an equality, x∗ minimizes L(x, λ∗, ν∗) over x. (Note: x∗ may
not be the unique minimizer of L(x, λ∗, ν∗).)
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2. Since
∑p

i=1 ν
∗
i hi(x

∗) = 0 and each term in the sum
∑

i=1 λ
∗
i fi(x

∗) is ≤ 0, each must
actually be 0. That is

λ∗i fi(x
∗) = 0, i = 1, . . . ,m.

This condition is known as complementary slackness, and it holds for any pri-
mal x∗ and any dual optimal (λ∗, ν∗) when strong duality holds. Roughly speaking,
it means the ith optimal Lagrange multiplier is zero unless the ith constraint is
active at the optimum.

5.3.2 KKT optimality conditions for convex problems (BV 5.5.3, p. 243)

Consider a standard form convex optimization problem for which f0, . . . , fm, h1, . . . , hp
are differentiable (and therefore have open domains). Let x̃, λ̃, ν̃ be any points that
satisfy the following Karush-Kuhn-Tucker (KKT) conditions:

1. Primal and dual feasibility: fi(x̃) ≤ 0, hi(x̃) = 0, λ̃i ≥ 0 for all i.

2. Complementary slackness: λ̃ifi(x̃) = 0 for all i.

3. First order condition: ∇f0(x̃) +
∑m

i=1 λ̃i∇fi(x̃) +
∑p

i=1 ν̃i∇hi(x̃) = 0.

Then x̃ and
(
λ̃, ν̃
)
are primal and dual optimal, respectively, with zero duality gap. To

see this, note that the x̃ is primal feasible, and L(x, λ̃, ν̃) is convex in x, since λ̃i ≥ 0.
Thus the first order condition implies that x̃ minimizes L(x, λ̃, ν̃) over x. So

g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

= f0(x̃) +
m∑
i=1

λ̃ifi(x̃) +

p∑
i=1

ν̃ihi(x̃)

= f0(x̃),

where in the last line we use complementary slackness and hi(x̃) = 0. Thus x̃ and
(
λ̃, ν̃
)

have zero duality gap, and therefore are primal and dual optimal.
In summary, for any convex optimization problem with differentiable objective and

constraint functions, any points that satisfy the KKT conditions are primal and dual
optimal and have zero duality gap.


