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1 Logistic regression

Consider the conditional probability modeling setting with input space X = Rd

and outcome space Y = {0, 1}. We want to predict the probability of the outcome
1 for any input x ∈ X . The logistic regression model is P (Y = 1 | X = x;w) =
φ(wTx), where φ(η) = 1/ (1 + e−η) (the standard logistic function). We fit w ∈
Rd by minimizing the negative log-likelihood (NLL) of w for some data D =
((xi, yi))

n
i=1. The NLL is

NLL(w) = −

[
n∑
i=1

yi log φ(w
Txi) + (1− yi) log

(
1− φ(wTxi)

)]
In Appendix A we show that

∇wNLL(w) =
n∑
i=1

(
φ(wTxi)− yi

)
xi,

and in Appendix B we show that the objective function NLL(w) is convex. So
we’ll get close to the global minimizer by gradient descent, and the minimizer
would have ∇wNLL(w) = 0. Note that this is a vector equation, with one entry
for each of d features. Let’s consider one entry at a time and write xji for the j’th
feature in the i’th example. Then we can write the optimality conditions for w as

n∑
i=1

φ(wTxi)x
j
i =

n∑
i=1

yix
j
i ∀j ∈ {1, . . . , d} .

As a simplest possible example, let’s suppose that xji ≡ 1 for all i. This
corresponds to putting an intercept into the logistic regression model. In this case,
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the optimality condition becomes

n∑
i=1

φ(wTxi) =
n∑
i=1

yi.

Note that the LHS is the expected number of x’s that have y = 1 in the training
set, where the expectation is w.r.t. the distribution given by our logistic regression
model. The RHS is the actual number of examples with y = 1. Thus if we apply
a fitted logistic regression model to its own training data, and add up the predicted
probabilities of y = 1, we get the actual number positive examples in the training
set.

For another example, suppose xji = 1(i has red hair) and suppose that yi = 1
means that i likes ice cream. Then on the RHS, each summand yix

j
i is 1 if individ-

ual i has red hair AND likes ice cream, and 0 otherwise. On the LHS, φ(wTxi)x
j
i

is 0 if individual i does not have red hair (because xji is 0) and otherwise it’s the
predicted probability that the [red-haired] individual likes ice cream. So then the
LHS is the expected number of individuals in the training set that have red hair and
like ice cream, where the expectation is w.r.t. the model. The RHS is the number
of individuals in the training set who have red hair and who like ice cream.

For the optimal w, these counts and expected counts must be equal for all d
features.

2 Multinomial logistic regression with compatibility
feature functions

The multinomial logistic regression model is a special case of the following prob-
ability model

p(y|x;w) = exp(
∑

r wrgr(x, y))∑
y′ exp(

∑
r wrgr(y

′, x))
,

where (x, y) ∈ X ×Y (X arbitrary, Y finite), the gi : (x, y) 7→ R for i = 1, . . . , d
are the “compatibility features”, or we can call all the g’s together the “class-
sensitive feature map” (depending on who you ask).

Exercise: How is multinomial logistic regression a special case of this? An-
swer: Let X = RD and let Y = {1, . . . , k}. For each j ∈ {1, . . . , D} and for
each c ∈ Y , create a compatibility feature gk(x, y) = xj1(y = c), where xj is the
jth component of the original feature vector x ∈ RD. So in the end there will be
kD compatibility features, and w ∈ Rd where d = kD.
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We’ll find w by maximum likelihood. The log-likelihood of w for a dataset
(x1, y1) , . . . , (xn, yn) is

L(w) =
n∑
i=1

log p(yi|xi;w)

=
n∑
i=1

(∑
ftr r

wrgr(xi, yi)− log

[∑
label y

exp

(∑
ftr r

wrgr(xi, y)

)])

Let’s compute the partials:

∂

∂wr
L(w) =

n∑
i=1

(
gr(xi, yi)−

∑
label y gr(xi, y) exp (

∑
ftr r wrgr(xi, y))∑

label y exp (
∑

ftr r wrgr(xi, y))

)

=
n∑
i=1

(
gr(xi, yi)−

∑
label y

gr(xi, y)p(y | xi;w)

)

=
n∑
i=1

(gr(xi, yi)− E [gr(xi, Y ) | X = xi;w]) ,

where the last expectation is over the distribution for Y predicted by our model
given input xi and parameter vector w.

Note that the first term of L(w) is linear in w and the second term is the
negative of the log-sum-exp of linear functions ofw, so the whole thing is concave
(cf. Boyd&Vandenberghe Example 3.14, p. 87). That means we should be able
to get close to the global minimum with gradient descent. So let’s examine what
happens at the solution to the first order conditions, since that’s what we’ll have
at the optimum:

∂

∂wr
L(w) = 0

⇐⇒ 1

n

n∑
i=1

gr(xi, yi) =
1

n

n∑
i=1

E [gr(xi, Y ) | X = xi;w]

So if gr(x, y) = 1(x has red hair)1(y = likes ice cream), then this condition is
telling us that the fraction of the sample that has red hair and likes ice cream is
equal to the expected fraction of sample that has red hair and likes ice cream, as
predicted by model. More generally, this is telling us that in fitting the model, we
are attempting to match, for each compatibility feature gr, the empirical average



4 B NLL for logistic regression is convex

of gr over the data with the expected average, where the expectation is based on
the label distributions predicted by the model.

We might call this “moment matching”, because a [generalized] moment is the
expectation of some function of your random variables. In this case, the function
is gr(xi, Y ).

A Gradient of NLL for logistic regression

We’ll now compute the gradient of the NLL. It’s helpful to first note that for
φ(η) = 1/ (1 + e−η) we have φ′(η) = φ(η)(1− φ(η).

∇wNLL(w) =
n∑
i=1

[
−yi∇w log φ(w

Txi)
]
+ (yi − 1)∇w log

(
1− φ(wTxi)

)
=

n∑
i=1

[
−yi

φ′(wTxi)xi
φ(wTxi)

]
− (yi − 1)

φ′(wTxi)xi
1− φ(wTxi)

=
n∑
i=1

[
−yi

φ(wTxi)
[
1− φ(wTxi)

]
xi

φ(wTxi)

]
− (yi − 1)

φ(wTxi)
[
1− φ(wTxi)

]
xi

1− φ(wTxi)

=
n∑
i=1

[
−yi

[
1− φ(wTxi)

]
xi
]
− (yi − 1)φ(wTxi)xi

=
n∑
i=1

(
−yixi + yiφ(w

Txi)xi − yiφ(wTxi)xi + φ(wTxi)xi
)

=
n∑
i=1

(
−yixi + φ(wTxi)xi

)
=

n∑
i=1

(
φ(wTxi)− yi

)
xi

B NLL for logistic regression is convex

∇2
wNLL(w) =

n∑
i=1

φ(wTxi)
(
1− φ(wTxi)

)
xix

T
i
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And for any z ∈ Rd, we have

zT
[
∇2
wNLL(w)

]
z =

n∑
i=1

φ(wTxi)
(
1− φ(wTxi)

)
zTxix

T
i z

=
n∑
i=1

φ(wTxi)
(
1− φ(wTxi)

) (
xTi z

)2
≥ 0.
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