1 Equivalent Optimization Problems

Suppose we have two functions \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) and \(g : \mathbb{R}^d \rightarrow \mathbb{R} \). Now consider the following optimization problem:

\[
\min_{x \in \mathbb{R}^d} f(x) + g(x).
\]

This is an unconstrained optimization problem. Let’s also consider the following constrained optimization problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) + \xi \\
\text{subject to} & \quad \xi \geq g(x).
\end{align*}
\]

When an optimization problem is presented in this form, it should be understood as a minimization over all variables that are unknown. In this case, we are minimizing over \(x \in \mathbb{R}^d \) and \(\xi \in \mathbb{R} \).

We claim that these two problems are “equivalent” in the following sense:

- Suppose the second problem attains a minimum at \((x^*, \xi^*)\), and that minimum is \(M \). Then the first problem also has a minimum value of \(M \) and it is attained at \(x^* \). [It follows that \(\xi^* = g(x^*) \).]

- Conversely, if the first problem attains a minimum at \(x^* \), then there is a \(\xi^* \) for which \((x^*, \xi^*)\) is a minimizer of the second problem, and the minimum values are the same.

Exercise 1. Convince yourself that these two problems are equivalent. [Hint/Answer: In the second problem, for any fixed value of \(x \), the objective is always minimized (subject to the constraint) by \(\xi = g(x) \).]
Remark 2. The equivalence shown above is a very strict equivalence. We may also speak more loosely and say that two problems are equivalent if we can easily derive a solution to one of them given a solution to the other one, even if the minimizers and minima are different. For example, if we know that \(\text{arg min}_x \exp[f(2x)] = x^* \), then we can immediately conclude that \(\text{arg min}_x f(x) = 2x^* \).

Exercise 3. Recall the definition of the “positive part” of a number:

\[
(x)_+ = x1(x \geq 0) = \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{otherwise.} \end{cases}
\]

Convince yourself that the problem

\[
\min_{w \in \mathbb{R}^d} f(w) + \sum_{i=1}^{n} (1 - y_i \left[w^T x_i + b\right])_+
\]

is equivalent to

\[
\begin{aligned}
\text{minimize} & \quad f(w) + \sum_{i=1}^{n} \xi_i \\
\text{subject to} & \quad \xi_i \geq (1 - y_i \left[w^T x_i + b\right])_+ \quad \text{for } i = 1, \ldots, n,
\end{aligned}
\]

which is equivalent to

\[
\begin{aligned}
\text{minimize} & \quad f(w) + \sum_{i=1}^{n} \xi_i \\
\text{subject to} & \quad \xi_i \geq 0 \quad \text{for } i = 1, \ldots, n \\
& \quad \xi_i \geq 1 - y_i \left[w^T x_i + b\right] \quad \text{for } i = 1, \ldots, n.
\end{aligned}
\]

Exercise 4. Convince yourself that the following two optimization problems are equivalent. First problem:

\[
\begin{aligned}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x_i + \alpha_i = c \quad \text{for } i = 1, \ldots, n, \\
& \quad x_i \geq 0, \quad \alpha_i \geq 0 \quad \text{for } i = 1, \ldots, n,
\end{aligned}
\]

for some known \(c \).
Second problem:

\[\text{minimize } f(x) \]
\[\text{subject to } x_i \in [0, c] \text{ for } i = 1, \ldots, n. \]

(Hint: Figure out what value \(\alpha_i \) is for any given \(x_i \). And what constraints do we need on \(x_i \) to satisfy the constraints, and so that the corresponding \(\alpha_i \) also satisfies its constraints?)

2 Lagrangian Encodes Objective and Constraints

First some shorthand: If \(\lambda \in \mathbb{R}^d \), we write \(\lambda \succeq 0 \) as a shorthand for \(\lambda_i \geq 0 \) for \(i = 1, \ldots, d \). Similarly, if \(c \in \mathbb{R}^d \), then \(\lambda \succeq c \) is shorthand for \(\lambda - c \succeq 0 \).

We claim that

\[\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) = \begin{cases} f(x) & \text{for } g(x) \leq 0 \\ \infty & \text{otherwise.} \end{cases} \]

Exercise 5. Convince yourself that this is true. (Hint: Find the sup when \(g(x) \leq 0 \) and when \(g(x) > 0 \).)

Exercise 6. Show that the following optimization problems are equivalent:

\[\text{minimize } f(x) \]
\[\text{subject to } g(x) \leq 0 \]

is equivalent to

\[\inf_x \left(\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) \right). \]

Hint/Solution: Based on the previous exercise, if \(g(x) > 0 \) (i.e. \(x \) is “not feasible” for the first optimization problem), then \(\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) = \infty \). So the infimum of the second optimization problem will not occur at any \(x \) where \(g(x) > 0 \). Thus the following problem is equivalent to the second problem:

\[\inf_{\{x \mid g(x) \leq 0\}} \left(\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) \right). \]

But when \(g(x) \leq 0 \), we know from the previous exercise that the supremum evaluates to \(f(x) \). Thus the second optimization problem is also equivalent to

\[\inf_{\{x \mid g(x) \leq 0\}} f(x), \]
and this is exactly the first optimization problem.