Exercises to Prepare for SVM and Lagrangian Lectures

David S. Rosenberg

1 Equivalent Optimization Problems

Suppose we have two functions $f : \mathbb{R}^d \to \mathbb{R}$ and $g : \mathbb{R}^d \to \mathbb{R}$. Now consider the following optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) + g(x).$$

This is an unconstrained optimization problem. Let’s also consider the following constrained optimization problem:

$$\minimize f(x) + \xi$$
$$\text{subject to } \xi \geq g(x).$$

When an optimization problem is presented in this form, it should be understood as a minimization over all variables that are unknown. In this case, we are minimizing over $x \in \mathbb{R}^d$ and $\xi \in \mathbb{R}$.

We claim that these two problems are “equivalent” in the following sense:

- Suppose the second problem attains a minimum at (x^*, ξ^*), and that minimum is M. Then the first problem also has a minimum value of M and it is attained at x^*. [It follows that $\xi^* = g(x^*)$.]

- Conversely, if the first problem attains a minimum at x^*, then there is a ξ^* for which (x^*, ξ^*) is a minimizer of the second problem, and the minimum values are the same.

Exercise 1. Convince yourself that these two problems are equivalent. [Hint/Answer: In the second problem, for any fixed value of x, the objective is always minimized (subject to the constraint) by $\xi = g(x)$.]
Remark 2. The equivalence shown above is a very strict equivalence. We may also speak more loosely and say that two problems are equivalent if we can easily derive a solution to one of them given a solution to the other one, even if the minimizers and minima are different. For example, if we know that $\arg\min_x \exp [f(2x)] = x^*$, then we can immediately conclude that $\arg\min_x f(x) = 2x^*$.

Exercise 3. Recall the definition of the “positive part” of a number:

$$(x)_+ = x 1(x \geq 0) = \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{otherwise.} \end{cases}$$

Convince yourself that the problem

$$\min_{w \in \mathbb{R}^d} f(w) + \sum_{i=1}^n \left(1 - y_i \left[w^T x_i + b\right]\right)_+$$

is equivalent to

minimize $f(w) + \sum_{i=1}^n \xi_i$

subject to $\xi_i \geq 1 - y_i \left[w^T x_i + b\right]_+$ for $i = 1, \ldots, n$,

which is equivalent to

minimize $f(w) + \sum_{i=1}^n \xi_i$

subject to $\xi_i \geq 0$ for $i = 1, \ldots, n$

$\xi_i \geq 1 - y_i \left[w^T x_i + b\right]$ for $i = 1, \ldots, n$.

Exercise 4. Convince yourself that the following two optimization problems are equivalent. First problem:

minimize $f(x)$

subject to $x_i + \alpha_i = c$ for $i = 1, \ldots, n$,

$x_i \geq 0$, $\alpha_i \geq 0$ for $i = 1, \ldots, n$,

for some known c.

Second problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x_i \in [0, c] \text{ for } i = 1, \ldots, n.
\end{align*}
\]

(Hint: Figure out what value \(\alpha_i \) is for any given \(x_i \). And what constraints do we need on \(x_i \) to satisfy the constraints, and so that the corresponding \(\alpha_i \) also satisfies its constraints?)

\section{Lagrangian Encodes Objective and Constraints (OPTIONAL)}

First some shorthand: If \(\lambda \in \mathbb{R}^d \), we write \(\lambda \succeq 0 \) as a shorthand for \(\lambda_i \geq 0 \) for \(i = 1, \ldots, d \). Similarly, if \(c \in \mathbb{R}^d \), then \(\lambda \succeq c \) is shorthand for \(\lambda - c \succeq 0 \).

We claim that

\[
\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) = \begin{cases}
 f(x) & \text{for } g(x) \leq 0 \\
 \infty & \text{otherwise}.
\end{cases}
\]

Exercise 5. Convince yourself that this is true. (Hint: Find the sup when \(g(x) \leq 0 \) and when \(g(x) > 0 \).)

Exercise 6. Show that the following optimization problems are equivalent:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g(x) \leq 0
\end{align*}
\]

is equivalent to

\[
\inf_x \left(\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) \right).
\]

Hint/Solution: Based on the previous exerise, if \(g(x) > 0 \) (i.e. \(x \) is “not feasible” for the first optimization problem), then \(\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) = \infty \). So the infimum of the second optimization problem will not occur at any \(x \) where \(g(x) > 0 \). Thus the following problem is equivalent to the second problem:

\[
\inf_{\{x|g(x)\leq 0\}} \left(\sup_{\lambda \succeq 0} (f(x) + \lambda g(x)) \right).
\]
But when $g(x) \leq 0$, we know from the previous exercise that the supremum evaluates to $f(x)$. Thus the second optimization problem is also equivalent to

$$\inf_{\{x|g(x) \leq 0\}} f(x),$$

and this is exactly the first optimization problem.